The maximum number of miles the truck can be driven so that the rental cost is at most
is ![\boxed{1423{\text{ miles}}}.](https://tex.z-dn.net/?f=%5Cboxed%7B1423%7B%5Ctext%7B%20miles%7D%7D%7D.)
Further explanation:
Given:
A local company rents a moving truck for ![\$ 750.](https://tex.z-dn.net/?f=%5C%24%20750.)
Rent per mile is
if the truck moves more than 1000 miles.
Explanation:
The rental cost of the truck is
if he drove less than 1000 miles.
![{\text{Cost}} = \$ 750{\text{ }}x \leqslant 1000](https://tex.z-dn.net/?f=%7B%5Ctext%7BCost%7D%7D%20%3D%20%5C%24%20750%7B%5Ctext%7B%20%20%20%7D%7Dx%20%5Cleqslant%201000)
The rental cost of the truck can be expressed as follows,
![{\text{Cost}} = 750 + 0.59x{\text{ }}x > 1000](https://tex.z-dn.net/?f=%7B%5Ctext%7BCost%7D%7D%20%3D%20750%20%2B%200.59x%7B%5Ctext%7B%20%20%7D%7Dx%20%3E%201000)
The rental cost is at most ![\$1000.](https://tex.z-dn.net/?f=%5C%241000.)
![750 + 0.59x \leqslant 1000](https://tex.z-dn.net/?f=750%20%2B%200.59x%20%5Cleqslant%201000)
The maximum number of miles can be obtained as follows,
![\begin{aligned}0.59x &\leqslant 1000 - 750\\0.59x &\leqslant 250\\x &\leqslant \frac{{250}}{{0.59}}\\x &\leqslant 423.7\\\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D0.59x%20%26%5Cleqslant%201000%20-%20750%5C%5C0.59x%20%26%5Cleqslant%20250%5C%5Cx%20%26%5Cleqslant%20%5Cfrac%7B%7B250%7D%7D%7B%7B0.59%7D%7D%5C%5Cx%20%26%5Cleqslant%20423.7%5C%5C%5Cend%7Baligned%7D)
The maximum number of miles can be obtained as follows,
![\begin{aligned}{\text{Maximum miles}} &= 1000 + 423\\&= 1423 \\\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%7B%5Ctext%7BMaximum%20miles%7D%7D%20%26%3D%201000%20%2B%20423%5C%5C%26%3D%201423%20%5C%5C%5Cend%7Baligned%7D)
The maximum number of miles the truck can be driven so that the rental cost is at most
is ![\boxed{1423{\text{ miles}}}.](https://tex.z-dn.net/?f=%5Cboxed%7B1423%7B%5Ctext%7B%20miles%7D%7D%7D.)
Learn more:
- Learn more about inverse of the function brainly.com/question/1632445.
- Learn more about equation of circle brainly.com/question/1506955.
- Learn more about range and domain of the function brainly.com/question/3412497
Answer details:
Grade: High School
Subject: Mathematics
Chapter: Linear inequality
Keywords: local company, rents, moving, truck, $750, $0.59, maximum, 1000 miles, $1000, at most, at least, number of miles, rental cost, driven over