Answer:
The additional amount of area covered between 4 to 9 days is 23.71 cm2
Step-by-step explanation:
As the relation is given as a combination of two functions so integration by parts is carried out thus
![\int\limits^9_4 {\sqrt{t}\, ln t} \, dt](https://tex.z-dn.net/?f=%5Cint%5Climits%5E9_4%20%7B%5Csqrt%7Bt%7D%5C%2C%20%20ln%20t%7D%20%5C%2C%20dt)
In order to solve this integral, integration by parts is to be carried out which is given as
![\int u v dx=u \int v dx -\int u'(\int vdx) dx](https://tex.z-dn.net/?f=%5Cint%20u%20v%20dx%3Du%20%5Cint%20v%20dx%20-%5Cint%20u%27%28%5Cint%20vdx%29%20dx)
Where
u(x) is a function of x
v(x) is a function of x
u' is the derivative of u wrt to x
Also u and v are defined on using the following sequence ILATE RULE (Inverse, Logarithmic, Algebraic, Trigonometric, Exponent)
As here Logarithmic function is present which is taken as u and the algebraic function is taken as v so
![u= ln t\\v=\sqrt{t}\\u'=\frac{1}{t}](https://tex.z-dn.net/?f=u%3D%20ln%20t%5C%5Cv%3D%5Csqrt%7Bt%7D%5C%5Cu%27%3D%5Cfrac%7B1%7D%7Bt%7D)
![\int v dt =\int t^{1/2} dt =\frac{2}{3}t^{3/2}](https://tex.z-dn.net/?f=%5Cint%20v%20dt%20%3D%5Cint%20t%5E%7B1%2F2%7D%20dt%20%3D%5Cfrac%7B2%7D%7B3%7Dt%5E%7B3%2F2%7D)
Substituting the values in equation gives
![\int u v dt=u \int v dt -\int u'(\int vdt) dt\\\int{\sqrt{t}\, ln t} \, dt=ln t (\frac{2}{3}t^{3/2}) -\int(\frac{1}{t} )(\frac{2}{3}t^{3/2}) dt\\\int{\sqrt{t}\, ln t} \, dt=ln t (\frac{2}{3}t^{3/2}) -\int(\frac{2}{3}t^{1/2}) dt\\\int{\sqrt{t}\, ln t} \, dt=ln t (\frac{2}{3}t^{3/2}) -\frac{2}{3}\int(t^{1/2}) dt\\\int{\sqrt{t}\, ln t} \, dt=ln t (\frac{2}{3}t^{3/2}) -\frac{2}{3}(\frac{2}{3}t^{3/2}) +C\\\int{\sqrt{t}\, ln t} \, dt=ln t (\frac{2}{3}t^{3/2}) -\frac{4}{9}(t^{3/2}) +C](https://tex.z-dn.net/?f=%5Cint%20u%20v%20dt%3Du%20%5Cint%20v%20dt%20-%5Cint%20u%27%28%5Cint%20vdt%29%20dt%5C%5C%5Cint%7B%5Csqrt%7Bt%7D%5C%2C%20%20ln%20t%7D%20%5C%2C%20dt%3Dln%20t%20%28%5Cfrac%7B2%7D%7B3%7Dt%5E%7B3%2F2%7D%29%20-%5Cint%28%5Cfrac%7B1%7D%7Bt%7D%20%29%28%5Cfrac%7B2%7D%7B3%7Dt%5E%7B3%2F2%7D%29%20dt%5C%5C%5Cint%7B%5Csqrt%7Bt%7D%5C%2C%20%20ln%20t%7D%20%5C%2C%20dt%3Dln%20t%20%28%5Cfrac%7B2%7D%7B3%7Dt%5E%7B3%2F2%7D%29%20-%5Cint%28%5Cfrac%7B2%7D%7B3%7Dt%5E%7B1%2F2%7D%29%20dt%5C%5C%5Cint%7B%5Csqrt%7Bt%7D%5C%2C%20%20ln%20t%7D%20%5C%2C%20dt%3Dln%20t%20%28%5Cfrac%7B2%7D%7B3%7Dt%5E%7B3%2F2%7D%29%20-%5Cfrac%7B2%7D%7B3%7D%5Cint%28t%5E%7B1%2F2%7D%29%20dt%5C%5C%5Cint%7B%5Csqrt%7Bt%7D%5C%2C%20%20ln%20t%7D%20%5C%2C%20dt%3Dln%20t%20%28%5Cfrac%7B2%7D%7B3%7Dt%5E%7B3%2F2%7D%29%20-%5Cfrac%7B2%7D%7B3%7D%28%5Cfrac%7B2%7D%7B3%7Dt%5E%7B3%2F2%7D%29%20%2BC%5C%5C%5Cint%7B%5Csqrt%7Bt%7D%5C%2C%20%20ln%20t%7D%20%5C%2C%20dt%3Dln%20t%20%28%5Cfrac%7B2%7D%7B3%7Dt%5E%7B3%2F2%7D%29%20-%5Cfrac%7B4%7D%7B9%7D%28t%5E%7B3%2F2%7D%29%20%2BC)
Now solving the definite integral
![\int\limits^9_4 {\sqrt{t}\, ln t} \, dt=ln t (\frac{2}{3}t^{3/2}) -\frac{4}{9}(t^{3/2}) +C\\\int\limits^9_4 {\sqrt{t}\, ln t} \, dt=[ln t (\frac{2}{3}t^{3/2}) -\frac{4}{9}(t^{3/2})]_{9} -[ln t (\frac{2}{3}t^{3/2}) -\frac{4}{9}(t^{3/2})]_{4}\\\int\limits^9_4 {\sqrt{t}\, ln t} \, dt=18 ln (9)-\frac{16}{3} ln 4 -\frac{76}{9}\\A=\int\limits^9_4 {\sqrt{t}\, ln t} \, dt=23.71 cm^2\\](https://tex.z-dn.net/?f=%5Cint%5Climits%5E9_4%20%7B%5Csqrt%7Bt%7D%5C%2C%20%20ln%20t%7D%20%5C%2C%20dt%3Dln%20t%20%28%5Cfrac%7B2%7D%7B3%7Dt%5E%7B3%2F2%7D%29%20-%5Cfrac%7B4%7D%7B9%7D%28t%5E%7B3%2F2%7D%29%20%2BC%5C%5C%5Cint%5Climits%5E9_4%20%7B%5Csqrt%7Bt%7D%5C%2C%20%20ln%20t%7D%20%5C%2C%20dt%3D%5Bln%20t%20%28%5Cfrac%7B2%7D%7B3%7Dt%5E%7B3%2F2%7D%29%20-%5Cfrac%7B4%7D%7B9%7D%28t%5E%7B3%2F2%7D%29%5D_%7B9%7D%20-%5Bln%20t%20%28%5Cfrac%7B2%7D%7B3%7Dt%5E%7B3%2F2%7D%29%20-%5Cfrac%7B4%7D%7B9%7D%28t%5E%7B3%2F2%7D%29%5D_%7B4%7D%5C%5C%5Cint%5Climits%5E9_4%20%7B%5Csqrt%7Bt%7D%5C%2C%20%20ln%20t%7D%20%5C%2C%20dt%3D18%20ln%20%289%29-%5Cfrac%7B16%7D%7B3%7D%20ln%204%20-%5Cfrac%7B76%7D%7B9%7D%5C%5CA%3D%5Cint%5Climits%5E9_4%20%7B%5Csqrt%7Bt%7D%5C%2C%20%20ln%20t%7D%20%5C%2C%20dt%3D23.71%20cm%5E2%5C%5C)
So the additional amount of area covered between 4 to 9 days is 23.71 cm2