Answer:
The relation that is a function is{ (-1,5), (-2,6), (-3,7) }. A function will not have any repeating x-values, they all have to be different.
\
let's firstly, convert the mixed fractions to improper, and then do equation.
![\bf \stackrel{mixed}{3\frac{4}{5}}\implies \cfrac{3\cdot 5+4}{5}\implies \stackrel{improper}{\cfrac{19}{5}} ~\hfill \stackrel{mixed}{2\frac{5}{7}}\implies \cfrac{2\cdot 7+5}{7}\implies \stackrel{improper}{\cfrac{19}{7}} \\\\[-0.35em] \rule{34em}{0.25pt}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bmixed%7D%7B3%5Cfrac%7B4%7D%7B5%7D%7D%5Cimplies%20%5Ccfrac%7B3%5Ccdot%205%2B4%7D%7B5%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B19%7D%7B5%7D%7D%0A~%5Chfill%0A%5Cstackrel%7Bmixed%7D%7B2%5Cfrac%7B5%7D%7B7%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Ccdot%207%2B5%7D%7B7%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B19%7D%7B7%7D%7D%0A%5C%5C%5C%5C%5B-0.35em%5D%0A%5Crule%7B34em%7D%7B0.25pt%7D)

Answer:
See proof below
Step-by-step explanation:
We will use properties of inequalities during the proof.
Let
. then we have that
. Hence, it makes sense to define the positive number delta as
(the inequality guarantees that these numbers are positive).
Intuitively, delta is the shortest distance from y to the endpoints of the interval. Now, we claim that
, and if we prove this, we are done. To prove it, let
, then
. First,
then
hence
On the other hand,
then
hence
. Combining the inequalities, we have that
, therefore
as required.
There would be an open circle on positive 12 with the arrow moving to the right.
Answer:
let the numbers be x and y then by given conditions:
x + y = 10 ….. eq 1
and
xy = 9….. eq 2
from eq 2. y = 9/x
put this in eq. 1
x + 9/x = 10
x + 9= 10x
x = 1
now,
xy = 9put value of x
y = 9
Step-by-step explanation:
Hope it is helpful....