Moles He = 7.83 x 10^24 / 6.02 x 10^23 =13.0
<span>mass He = 13.0 mol x 4.00 g/mol = 52.0 g</span>
Winter because the winter solstice is the point when the sun is at its lowest making it the coldest day of the year
Answer:
<em>Alkali metals are among the most reactive metals. This is due in <u>part to their larger atomic radii and low ionization energies.</u> They tend to donate their electrons in reactions and have an oxidation state of +1. ... All these characteristics can be attributed to these elements' large atomic radii and weak metallic bonding.</em>
Explanation:
<em>I </em><em>hope</em><em> it</em><em> will</em><em> help</em><em> you</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>
<em>#</em><em>C</em><em>A</em><em>R</em><em>R</em><em>Y</em><em>O</em><em>N</em><em>L</em><em>E</em><em>R</em><em>A</em><em>N</em><em>I</em><em>N</em><em>G</em>
Here is a picture of which shows you how many valence electrons are in the Lewis structure of xeo4
<u>Answer:</u> The solubility of
in water is 
<u>Explanation:</u>
The balanced equilibrium reaction for the ionization of cadmium phosphate follows:

3s 2s
The expression for solubility constant for this reaction will be:
![K_{sp}=[Cd^{2+}]^3[PO_4^{3-}]^2](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BCd%5E%7B2%2B%7D%5D%5E3%5BPO_4%5E%7B3-%7D%5D%5E2)
We are given:

Putting values in above equation, we get:

Hence, the solubility of
in water is 