Answer:
5.56 × 10^23 molecules
Explanation:
The number of molecules in a molecule can be calculated by multiplying the number of moles in that molecule by Avagadro's number (6.02 × 10^23)
Using mole = mass/molar mass
Molar mass of N2O4 = 14(2) + 16(4)
= 28 + 64
= 92g/mol
mole = 85.0/92
= 0.9239
= 0.924mol
number of molecules of N2O4 (nA) = 0.924 × 6.02 × 10^23
= 5.56 × 10^23 molecules
Answer: (B)
Explanation: Decreases the number of bases in the sequence.
Answer:
water at 0C
Explanation:
The colder the water is, the denser it is, so the water here with the lowest temperature, is 0C
Colligative
properties calculations are used for this type of problem. Calculations are as
follows:<span>
</span>
<span>ΔT(freezing point)
= (Kf)m
ΔT(freezing point)
= 1.86 °C kg / mol (0.705)
ΔT(freezing point) = 1.3113 °C
</span>
<span>
</span>
<span>Hope this answers the question. Have a nice day.</span>
Answer : The correct option is, 13.7 mole
Solution : Given,
Moles of
= 27.4 moles
The given balanced chemical reaction is,

From the balanced chemical reaction, we conclude that
As, 2 moles of
react with 1 moles of 
So, 27.4 moles of
react with
moles of 
Therefore, the number of moles of oxygen
required are, 13.7 moles