Answer:
so 9:20
Step-by-step explanation:
I'm confused by this question
Answer:
Standard error = 0.4
Step-by-step explanation:
Step 1
We find the Standard Deviation
The formula = √(x - mean)/n - 1
n = 15
Mean = 1.93 hours
= √(0- 1.93)² + (0-1.93)² +(0- 1.93)²+( 0- 1.93)²+ (1- 1.93)² + (1- 1.93)² +(1 - 1.93)² +(2 - 1.93)² + (2 - 1.93)² + (2 - 1.93)² + (2 - 1.93)² + ( 2 - 1.93)² +(4 - 1.93)² +(4 - 1.93)² + (5 - 1.93)²/15 - 1
= √(3.737777776 + 3.737777776 + 3.737777776 + 0.871111111 +0.871111111 + 0.871111111 + 0.004444444445+ 0.004444444445 + 0.004444444445 + 0.004444444445 + 0.004444444445 + 1.137777778 + 4.271111112 + 4.271111112 + 9.404444446)/15 - 1
= √2.352380952
= 1.533747356
Step 2
We find the standard error
The formula = Standard Deviation/√n
Standard deviation = 1.533747356
n = 15
= 1.533747356/√15
= 1.533747356 /3.87298334621
= 0.39601186447
Approximately = 0.4
Therefore, the standard error is 0.4
Answer:
31.4
Step-by-step explanation:
3.14 x 2 x 5 = 31.4
Answer:
2
Step-by-step explanation:
Answer:
a) No
b) 42%
c) 8%
d) X 0 1 2
P(X) 42% 50% 8%
e) 0.62
Step-by-step explanation:
a) No, the two games are not independent because the the probability you win the second game is dependent on the probability that you win or lose the second game.
b) P(lose first game) = 1 - P(win first game) = 1 - 0.4 = 0.6
P(lose second game) = 1 - P(win second game) = 1 - 0.3 = 0.7
P(lose both games) = P(lose first game) × P(lose second game) = 0.6 × 0.7 = 0.42 = 42%
c) P(win first game) = 0.4
P(win second game) = 0.2
P(win both games) = P(win first game) × P(win second game) = 0.4 × 0.2 = 0.08 = 8%
d) X 0 1 2
P(X) 42% 50% 8%
P(X = 0) = P(lose both games) = P(lose first game) × P(lose second game) = 0.6 × 0.7 = 0.42 = 42%
P(X = 1) = [ P(lose first game) × P(win second game)] + [ P(win first game) × P(lose second game)] = ( 0.6 × 0.3) + (0.4 × 0.8) = 0.18 + 0.32 = 0.5 = 50%
e) The expected value 
f) Variance 
Standard deviation 