Refer to the diagram shown below.
Still-water speed = 9.5 m/s
River speed = 3.75 m/s down stream.
The velocity of the swimmer relative to the bank is the vector sum of his still-water speed and the speed of the river.
The velocity relative to the bank is
V = √(9.5² + 3.75²) = 10.21 m/s
The downstream angle is
θ = tan⁻¹ 3.75/9.5 = 21.5°
Answer: 10.2 m/s at 21.5° downstream.
Answer:

Explanation:
Acceleration is given by

where
is the change in velocity
is the time interval in which the change in velocity occurs
To find the acceleration at 1 second, we can take the data at t = 1 s and t = 2. We find:


So, the acceleration is

Rhythmic gymnastics, trampoline gymnastics, javelin, diving, volleyball, and more due to the lack of gravity on the moon.
Velocidad inicial = 20 m/s
velocidad final = 0 m/s
aceleracion = -2 m/s^2
aceleracion = (cambio de velocidad)/(cambio de tiempo)
(cambio de tiempo)= (cambio de velocidad)/aceleracion
tiempo = (-20 m/s)/(-2 m/s^2)
= 10 segundos
x = (x(inicial)) + (v(inicial))(tiempo) + 1/2(aceleracion)(tiempo)^2
x(inicial) = 0
x = (20 m/s)(10 s) + 1/2 (-2m/s^2)(10 s)^2
x = 200 m - 100 m
x = 100 m (el espacio recorrido en los dos segundos)
espero que esto te ayude! buena suerte!