Whenever there is no exponent on a variable,
you can give it an exponent of 1.
So we can rewrite the x's in this problem as x¹.
When we multiply two terms together
with like bases, we add their exponents.
So now just add their exponents to get x².
"1 indicating a coupon and all other outcomes indicating no coupon"
Probability is (number of successful outcomes) / (number of possible outcomes)
Theoretical Probability of rolling a 1: 1/8
Experimental Probability of using coupons: 4/48 = 1/12
So, the experimental probability of a customer using a coupon (that is, 1/12) is smaller than the theoretical probability of rolling a 1 (that is, 1/8).
Solve for x by simplifying both sides of the equation, then isolating the variable.
x = 4
He earns $44 dollars. he charges $2 dollars for every bag.
I believe the correct answer from the choices listed above is option A. Given a segment with endpoints A and B and the steps given above, the figure that you can construct would be a perpendicular bisector. <span>The </span>perpendicular bisector<span> of a line segment can be constructed using a compass by drawing circles centered at and with radius and connecting their two intersections.</span>