1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zavuch27 [327]
3 years ago
12

Given that AD and BC are parallel, find the value of x.

Mathematics
1 answer:
larisa [96]3 years ago
6 0

Answer:

Therefore the value of x is 15.

Step-by-step explanation:

Given:

AD || BC

m∠ B = (9x + 15)°

m∠ A = (3x - 15)°

To Find:

x = ?

Solution:

AD || BC       ...............Given

If two lines are parallel and sum of the interior angles are supplementary.

i.e m∠ B and m∠ A are interior between Parallel lines.

∴ \angle B + \angle C =180\\

Substituting the given values we get

∴ (9x + 15)+( 3x - 15)=180\\12x=180\\\\x=\frac{180}{12} \\\\\therefore x =15

Therefore the value of x is 15.

You might be interested in
Can you help me answer this Question IMG_3737.JPG
Crazy boy [7]
Sorry, there is no way to see the image. Take a picture, don't copy the link
3 0
3 years ago
You are given 4 matrices M1, M2, M3, M4 and you are asked to determine the optimal schedule for the product M1 ×M2 × M3 ×M4 that
alexandr1967 [171]

Answer:

Step-by-step explanation:

first method is to try out all possible combinations and pick out the best one which has the minimum operations but that would be infeasible method if the no of matrices increases  

so the best method would be using the dynamic programming approach.

A1 = 100 x 50

A2 = 50 x 200

A3 = 200 x 50

A4 = 50 x 10

Table M can be filled using the following formula

Ai(m,n)

Aj(n,k)

M[i,j]=m*n*k

The matrix should be filled diagonally i.e., filled in this order

(1,1),(2,2)(3,3)(4,4)

(2,1)(3,2)(4,3)

(3,1)(4,2)

(4,1)

<u>                  Table M[i, j]                                             </u>

             1                      2                  3                    4

4    250000          200000        100000                0  

3      

750000        500000            0

2      1000000             0

1            

0

Table S can filled this way

Min(m[(Ai*Aj),(Ak)],m[(Ai)(Aj*Ak)])

The matrix which is divided to get the minimum calculation is selected.

Table S[i, j]

           1          2         3        

4

4          1           2         3

3          

1          2

2            1

1

After getting the S table the element which is present in (4,1) is key for dividing.

So the matrix multiplication chain will be (A1 (A2 * A3 * A4))

Now the element in (4,2) is 2 so it is the key for dividing the chain

So the matrix multiplication chain will be (A1 (A2 ( A3 * A4 )))

Min number of multiplications: 250000

Optimal multiplication order: (A1 (A2 ( A3 * A4 )))

to get these calculations perform automatically we can use java

code:

public class MatrixMult

{

public static int[][] m;

public static int[][] s;

public static void main(String[] args)

{

int[] p = getMatrixSizes(args);

int n = p.length-1;

if (n < 2 || n > 15)

{

System.out.println("Wrong input");

System.exit(0);

}

System.out.println("######Using a recursive non Dyn. Prog. method:");

int mm = RMC(p, 1, n);

System.out.println("Min number of multiplications: " + mm + "\n");

System.out.println("######Using bottom-top Dyn. Prog. method:");

MCO(p);

System.out.println("Table of m[i][j]:");

System.out.print("j\\i|");

for (int i=1; i<=n; i++)

System.out.printf("%5d ", i);

System.out.print("\n---+");

for (int i=1; i<=6*n-1; i++)

System.out.print("-");

System.out.println();

for (int j=n; j>=1; j--)

{

System.out.print(" " + j + " |");

for (int i=1; i<=j; i++)

System.out.printf("%5d ", m[i][j]);

System.out.println();

}

System.out.println("Min number of multiplications: " + m[1][n] + "\n");

System.out.println("Table of s[i][j]:");

System.out.print("j\\i|");

for (int i=1; i<=n; i++)

System.out.printf("%2d ", i);

System.out.print("\n---+");

for (int i=1; i<=3*n-1; i++)

System.out.print("-");

System.out.println();

for (int j=n; j>=2; j--)

{

System.out.print(" " + j + " |");

for (int i=1; i<=j-1; i++)

System.out.printf("%2d ", s[i][j]);

System.out.println();

}

System.out.print("Optimal multiplication order: ");

MCM(s, 1, n);

System.out.println("\n");

System.out.println("######Using top-bottom Dyn. Prog. method:");

mm = MMC(p);

System.out.println("Min number of multiplications: " + mm);

}

public static int RMC(int[] p, int i, int j)

{

if (i == j) return(0);

int m_ij = Integer.MAX_VALUE;

for (int k=i; k<j; k++)

{

int q = RMC(p, i, k) + RMC(p, k+1, j) + p[i-1]*p[k]*p[j];

if (q < m_ij)

m_ij = q;

}

return(m_ij);

}

public static void MCO(int[] p)

{

int n = p.length-1;     // # of matrices in the product

m    =    new    int[n+1][n+1];        //    create    and    automatically initialize array m

s = new int[n+1][n+1];

for (int l=2; l<=n; l++)

{

for (int i=1; i<=n-l+1; i++)

{

int j=i+l-1;

m[i][j] = Integer.MAX_VALUE;

for (int k=i; k<=j-1; k++)

{

int q = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];

if (q < m[i][j])

{

m[i][j] = q;

s[i][j] = k;

}

}

}

}

}

public static void MCM(int[][] s, int i, int j)

{

if (i == j) System.out.print("A_" + i);

else

{

System.out.print("(");

MCM(s, i, s[i][j]);

MCM(s, s[i][j]+1, j);

System.out.print(")");

}

}

public static int MMC(int[] p)

{

int n = p.length-1;

m = new int[n+1][n+1];

for (int i=0; i<=n; i++)

for (int j=i; j<=n; j++)

m[i][j] = Integer.MAX_VALUE;

return(LC(p, 1, n));

}

public static int LC(int[] p, int i, int j)

{

if (m[i][j] < Integer.MAX_VALUE) return(m[i][j]);

if (i == j) m[i][j] = 0;

else

{

for (int k=i; k<j; k++)

{

int   q   =   LC(p,   i,   k)   +   LC(p,   k+1,   j)   +   p[i-1]*p[k]*p[j];

if (q < m[i][j])

m[i][j] = q;

}

}

return(m[i][j]);

}

public static int[] getMatrixSizes(String[] ss)

{

int k = ss.length;

if (k == 0)

{

System.out.println("No        matrix        dimensions        entered");

System.exit(0);

}

int[] p = new int[k];

for (int i=0; i<k; i++)

{

try

{

p[i] = Integer.parseInt(ss[i]);

if (p[i] <= 0)

{

System.out.println("Illegal input number " + k);

System.exit(0);

}

}

catch(NumberFormatException e)

{

System.out.println("Illegal input token " + ss[i]);

System.exit(0);

}

}

return(p);

}

}

output:

7 0
3 years ago
Suppose your friend's parents invest $15,000 in an account paying 4 percent compounded annually. What will the balance be after
Contact [7]
Im not real sure if this is it but if you start with 15,000 and its 4% for 5 years then <span>This investment will be worth: </span>$<span>18,250. hope it helps

</span>
4 0
3 years ago
The breaking strength of a cable is assumed to be lognormally distributed with a mean of 75 and standard deviation of 20. • If t
son4ous [18]

Answer:

If the load of magnitude 50 is hung from the cable, determine the probability of failure of the cable?

There is a 10.56% probability of failure of the cable.

If the load can take values 30, 50, and 70 with probabilities 0.2, 0.35, and 0.45 respectively, determine the probability of failure of the cable?

There is a 15.87% probability of failure of the cable.

Step-by-step explanation:

Problems of normally distributed samples can be solved using the z-score formula.

In a set with mean \mu and standard deviation \sigma, the zscore of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this problem, we have that:

The breaking strength of a cable is assumed to be lognormally distributed with a mean of 75 and standard deviation of 20. This means that \mu = 75, \sigma = 20.

If the load of magnitude 50 is hung from the cable, determine the probability of failure of the cable?

This is the pvalue of Z when X = 50.

Z = \frac{X - \mu}{\sigma}

Z = \frac{50 - 75}{20}

Z = -1.25

Z = -1.25 has a pvalue of 0.1056.

There is a 10.56% probability of failure of the cable.

If the load can take values 30, 50, and 70 with probabilities 0.2, 0.35, and 0.45 respectively, determine the probability of failure of the cable?

Now we have that

X = 0.2(30) + 0.35(50) + 0.45(70) = 55

Z = \frac{X - \mu}{\sigma}

Z = \frac{55 - 75}{20}

Z = -1

Z = -1 has a pvalue of 0.1587.

There is a 15.87% probability of failure of the cable.

3 0
3 years ago
Who can pls follow me on rblx im trying to get 100 followers pls follow me tysm if you will :D
gladu [14]
I can my user is hxe_toxic
4 0
3 years ago
Other questions:
  • What is the thoerema of Pitagora ?​
    14·1 answer
  • One way to increase acceleration is by
    12·1 answer
  • Brought 12 grams of chocolate ate half of the chocolate how many grams of chocolate she ate
    9·2 answers
  • You've fallen into my trap! justin shouts, laughing like the madman he is. the mouse he captured stares back at him indifferentl
    12·2 answers
  • Convert.<br> 300 liters<br> to hectoliters
    6·2 answers
  • 4x−3/2 − 5−2x/3 − 3x−4/3 =5
    13·1 answer
  • Ralf spends 15 1/3 hours per month playing tennis. How many hours does he play tennis in a year?
    14·1 answer
  • HEY CAN SOMEONE DO NUMBER 1 FOR ME ONLY??? ILL GIVE BRAINLIEST!!!!! IM RUSHINGGGGG
    5·1 answer
  • A line passes through (0, 2) and has a slope of 13 .
    14·1 answer
  • PLEASE HELP 50 POINTS I WILL GIVE BRAINLIEST
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!