1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bogdan [553]
4 years ago
6

A proton moves perpendicular to a uniform magnetic field B with arrow at a speed of 2.50 107 m/s and experiences an acceleration

of 2.20 1013 m/s2 in the positive x-direction when its velocity is in the positive z-direction. Determine the magnitude and direction of the field.
Physics
2 answers:
IRINA_888 [86]4 years ago
6 0

Answer:

9.175 x 10∧-3

Explanation:

since acceleration is in positve X direction the magnetic field must be in negative  Y direction

acceleration to right hand thumb rule.

B = fm/qvsinO = ma/qvsin0

B = (1.67 x 10∧-27)(2.20 x 10∧13) / (1.60 x 10∧-19)(2.50 x 10∧7)sin90

B = 3.67 x 10∧-14 / 4 x 10∧-12

=  9.175 x 10∧-3

B = 9.175 x 10∧-3 in negative Y direction

KIM [24]4 years ago
4 0

Answer:

A) B = 0.009185 T

B) Drection is negative y-direction

Explanation:

A) We are given;

Speed(v) = 2.5 x 10^(7) m/s

Acceleration (a) = 2.2 x 10^(13) m/s²

We also know that charge of proton(q) = 1.6 x 10^(-19)

Mass of proton(m) = 1.67 x 10^(-27)

Now, Since the proton is moving by circular motion, this force is equal to the centripetal force which is given as;

F = qvBsinθ = ma

Since perpendicular, θ = 90°

And so, sinθ = sin 90 = 1

Thus, qvB = ma

Making B the subject gives;

B = ma/qv

B = (1.67 X 10^(-27) X 2.2 X 10^13)) / (1.6 X 10^(-19) X 2.5 X 10^(7))

= 0.009185 T

B) By use of Flemings right hand rule, we can see that the middle finger points toward negative y-direction, so the magnetic field is in the negative y-direction

You might be interested in
Which of these statements is false? Question 18 options:
Katarina [22]

True because the kind of light we get is white light and everything we see is actually every colour except the color we are seeing because that is wwhat is reflected

6 0
3 years ago
When you walk across the ground and push on it with your feet...
marissa [1.9K]

Answer:

The ground pushes back on your feet with equal force.

Explanation:

Newton's Laws of Motion

6 0
3 years ago
Read 2 more answers
Which statement best describes what energy transfer diagrams show? Energy can change form, but the total amount of energy stays
Rom4ik [11]
Energy can change form, but the total amount of energy stays the same.
3 0
3 years ago
Read 2 more answers
Tennis balls traveling at greater than 100 mph routinely bounce off tennis rackets. At some sufficiently high speed, however, th
Kipish [7]

Answer:

Probability of tunneling is 10^{- 1.17\times 10^{32}}

Solution:

As per the question:

Velocity of the tennis ball, v = 120 mph = 54 m/s

Mass of the tennis ball, m = 100 g = 0.1 kg

Thickness of the tennis ball, t = 2.0 mm = 2.0\times 10^{- 3}\ m

Max velocity of the tennis ball, v_{m} = 200\ mph = 89 m/s

Now,

The maximum kinetic energy of the tennis ball is given by:

KE = \frac{1}{2}mv_{m}^{2} = \frac{1}{2}\times 0.1\times 89^{2} = 396.05\ J

Kinetic energy of the tennis ball, KE' = \frac{1}{2}mv^{2} = 0.5\times 0.1\times 54^{2} = 154.8\ m/s

Now, the distance the ball can penetrate to is given by:

\eta = \frac{\bar{h}}{\sqrt{2m(KE - KE')}}

\bar{h} = \frac{h}{2\pi} = \frac{6.626\times 10^{- 34}}{2\pi} = 1.0545\times 10^{- 34}\ Js

Thus

\eta = \frac{1.0545\times 10^{- 34}}{\sqrt{2\times 0.1(396.05 - 154.8)}}

\eta = \frac{1.0545\times 10^{- 34}}{\sqrt{2\times 0.1(396.05 - 154.8)}}

\eta = 1.52\times 10^{-35}\ m

Now,

We can calculate the tunneling probability as:

P(t) = e^{\frac{- 2t}{\eta}}

P(t) = e^{\frac{- 2\times 2.0\times 10^{- 3}}{1.52\times 10^{-35}}} = e^{-2.63\times 10^{32}}

P(t) = e^{-2.63\times 10^{32}}

Taking log on both the sides:

logP(t) = -2.63\times 10^{32} loge

P(t) = 10^{- 1.17\times 10^{32}}

6 0
3 years ago
Using 6400 km as the radius of Earth, calculate how high above Earth’s surface you would have to be in order to weigh 1/16th of
FrozenT [24]
Gravity obeys the inverse square law.  At 6400 km above the center of the Earth (Earth's surface) you weigh x.  Twice that reduces your weight to 1/4th.  Four times that height reduces your weight to 1/16th.  4 times 6400 km is 25,600 km.  But that is above the center of the earth, and the question requests the height above the surface, so we deduct 6400 km to arrive at our final answer:  19,200 km.

Incidentally, it doesn't exactly work the opposite way.  At the center of the Earth the mass would be equally distributed around you, and you would therefore be weightless.
6 0
3 years ago
Other questions:
  • What is the first step in glycolysis
    8·1 answer
  • An AC voltage is applied to a purely capacitive circuit. Just as the applied voltage is crossing the zero axis going negative, w
    5·1 answer
  • As the shuttle bus comes to a sudden stop to avoid hitting a dog, it accelerates uniformly at -4.1 m/s^2 as it slows from 9.0 m/
    5·1 answer
  • At sunset, the sun appears reddish. What is MOST LIKELY the reason for this phenomenon?
    5·2 answers
  • consider two charges. one has a charge of +15.mC and the other a charge of -3.00mC. if the electrostatic force between these cha
    6·1 answer
  • A car mass 600kg starts from rest moving uniform acceleration 0.2 m/s^2 after 60 seconds collides with stationary pick up van of
    10·1 answer
  • When you see yourself in a plane mirror, the image is always:
    15·1 answer
  • The diagram shows an LED light bulb.
    9·1 answer
  • Can you plz make me brainliast?
    14·1 answer
  • A tennis ball is hit into the air with a racket. when is the ball’s kinetic energy the greatest? ignore air resistance.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!