The kinetic energy of an object is increased by a factor of 4 . By what factor is the magnitude of its momentum changed: 2.
<h3>What is kinetic energy?</h3>
- A particle or an item that is in motion has a sort of energy called kinetic energy. An item accumulates kinetic energy when work, which involves the transfer of energy, is done on it by exerting a net force.
- Kinetic energy comes in five forms: radiant, thermal, acoustic, electrical, and mechanical.
- The energy of a body in motion, or kinetic energy (KE), is essentially the energy of all moving objects. Along with potential energy, which is the stored energy present in objects at rest, it is one of the two primary types of energy.
- Explain that a moving object's mass and speed are two factors that impact the amount of kinetic energy it will possess.
The kinetic energy of an object is increased by a factor of 4 . By what factor is the magnitude of its momentum changed: 2.
To learn more about kinetic energy, refer to:
brainly.com/question/25959744
#SPJ4
Answer:
Well, each ml of water requires one calorie to go up 1 degree Celsius, so this liter of water takes 1000 calories to go up 1 degree Celsius.
Explanation:
Answer: I believe the answer is C. Higher Volume.
Explanation: I apologize if I am incorrect.
<span>It is important to use the Système Internationale (SI) units to describe motion, and other scientific concepts, firstly because the units are the most widely used. Unit choice is largely arbitrary, however, because many scientific units are derived from the base SI units, for example, the Newton is kg m s-2. Thus, secondly, more complex units are based on the bedrock of the SI units.</span>
Answer:
g' = 13.5 m/s²
Explanation:
The acceleration due to gravity on surface of earth is given by the formula:
g = GMe/Re² --------------- euation 1
where,
g = acceleration due to gravity on surface of earth
G = Universal Gravitational Constant
Me = Mass of Earth
Re = Radius of Earth
Now, the the acceleration due to gravity on the surface of Kepler-62e is:
g' = GM'/R'² --------------- euation 1
where,
g' = acceleration due to gravity on surface of Kepler-62e
G = Universal Gravitational Constant
M' = Mass of Kepler-62e = 3.57 Me
R' = Radius of Kepler-62e = 1.61 Re
Therefore,
g' = G(3.57 Me)/(1.61 Re)²
g' = 1.38 GMe/Re²
using equation 1:
g' = 1.38 g
where,
g = 9.8 m/s²
Therefore,
g' = 1.38(9.8 m/s²)
<u>g' = 13.5 m/s²</u>