Explanation:
Speed of the marathon runner, v = 9.51 mi/hr
Distance covered by the runner, d = 26.220 mile
Let t is the time taken by the marathon runner. We know that the speed of the runner is given by total distance divided by total time taken. Mathematically, it is given by :



t = 2.75 hours
Since, 1 hour = 60 minutes
t = 165 minutes
Since, 1 minute = 60 seconds
t = 9900 seconds
Hence, this is the required solution.
Answer:
15.625 watts
Explanation:
Recall that power is defined as the worked performed per unit of time:
Power = Work / time
The work done is Force * distance, so in our case the work is:
Work = 25 M * 5 m = 125 J
Then the power will be:
Power = 125 J / 8 sec = 15.625 watts
Answer:
1. Distance travelled = 12 km.
2. Displacement = 8.6 km
Explanation:
From the question given above, the following data were obtained:
Distance 1 (d₁) = 7 km
Distance 2 (d₂) = 5 km
Total distance =?
Displacement =?
1. Determination of the distance travelled.
Distance 1 (d₁) = 7 km
Distance 2 (d₂) = 5 km
Total distance (dₜ) =?
dₜ = d₁ + d₂
dₜ = 7 + 5
dₜ = 12 km
2. Determination of the displacement.
In the attached photo, R is the displacement.
We can obtain the value of R by using the pythagoras theory as illustrated below:
R² = 7² + 5²
R² = 49 + 25
R² = 74
Take the square root of both side
R = √74
R = 8.6 km
Let the observer be 'd' distance away from the thunderstorm and let light take 't' time to reach the observer
Since the speed of sound and light remains constant in a particular medium, we can use
Speed = Distance/Time
For light,
3 x 10^8 = d/t
t = d/(3 x 10^8) -1
For sound,
339 = d/(t + 30) -2
Putting value from 1 in 2.
d = 10^4 m(approx)