Answer:
Explanation:
Ionic (or electrovalent) compounds conduct electricity when there they are in the aqueous state/solution because the charges of ions of these compounds are what carry the electric charges in the aqueous solution as a result of free movement within the aqueous solution which they do not "have" when in there solid state (where they have a highly restricted movement/compacted structure).
I might not be right but I think the empirical formula is NO2
Explanation:
You may not realise it, but you come across aldehydes and ketones many times a day. Take cakes and biscuits, for example. Their golden, caramelised crust is formed thanks to the Mailliard reaction. This is a process that occurs at temperatures above 140° C, when sugars with the carbonyl group in foods react with nucleophilic amino acids to create new and complex flavours and aromas.
Another example is formaldehyde. Correctly known as methanal, it is the most common aldehyde in industry. It has multiple uses, such as in tanning and embalming, or as a fungicide. However, we can also react it with different molecules to make a variety of more useful compounds. These include polymers, adhesives and precursors to explosives. But how do aldehydes and ketones react, and why?You should remember from Aldehydes and Ketones that they both contain the carbonyl functional group , . This is a carbon atom joined to an oxygen atom by a double bond. Let's take a closer look at it.
If we compare the electronegativities of carbon and oxygen, we can see that oxygen is a lot more electronegative than carbon.
The mass of NaCl formed is 8.307 grams
<u><em> calculation</em></u>
step 1: write the equation for reaction
Na₂CO₃ + 2HCl → 2 NaCl +CO₂ +H₂O
Step 2: find the moles of Na₂CO₃
moles = mass/molar mass
The molar mass of Na₂CO₃ is = (23 x2) + 12 + ( 16 x3) = 106 g/mol
moles = 7.5 g/106 g/mol =0.071 moles
Step 3: use the mole ratio to determine the mole of NaCl
Na₂CO₃:NaCl is 1:2 therefore the moles of NaCl =0.07 x2 =0.142 moles
Step 4: calculate mass of NaCl
mass= moles x molar mass
the molar mass of NaCl= 23 +35.5 =58.5 g/mol
mass = 0.142 moles x 58.5 g/mol =8.307 grams