Answer:
Only one—(i), or (ii), or (iii)—increases the reaction rate.
Explanation:
<em>Which of the following changes always leads to an increase in the rate constant for a reaction?</em>
- <em>Decreasing the temperature. </em>NO. A lower temperature leads to a slower reaction because the molecules have less energy to react.
- <em>Decreasing the activation energy</em>. YES. According to the Arrhenius equation, the lower the activation energy, the higher the rate constant.
- <em>Making the value of ΔE more negative</em>. NO. A more negative ΔE means a reaction is more spontaneous but not faster.
<u>Answer:</u> The value of <em>i</em> is 1.4 and 40% dissociation of 100 particles of zinc sulfate will yield 60 undissociated particles.
<u>Explanation:</u>
The equation used to calculate the Vant' Hoff factor in dissociation follows:

where,
= degree of dissociation = 40% = 0.40
i = Vant' Hoff factor
n = number of ions dissociated = 2
Putting values in above equation, we get:

The equation used to calculate the degee of dissociation follows:

Total number of particles taken = 100
Degree of dissociation = 40% = 0.40
Putting values in above equation, we get:

This means that 40 particles are dissociated and 60 particles remain undissociated in the solution.
Hence, 40% dissociation of 100 particles of zinc sulfate will yield 60 undissociated particles.
Answer: The concentration of
is 0.234 M
Explanation:
According to the neutralization law,
where,
= basicity
= 2
= molarity of
solution = ?
= volume of
solution = 50.0 ml
= acidity of
= 1
= molarity of
solution = 0.375 M
= volume of
solution = 62.5 ml
Putting in the values we get:
Therefore concentration of
is 0.234 M
Answer:
1.) 3
2.) 60 CM
Explanation:
1. Density=
= 
2. Length*Width*Height=3*10*2
I: Current
V: Voltage
R: resistance
you’re welcome ;)