For this question I think the answer is C.
Explanation:
Because of non-reactive properties of the inert gases, these gases are useful to prevent the undesirable chemical reactions to happen.
They provide a non-explosive environment. They are also cheap and economical.
Food is packed in the inert gas to prevent rancidity. This also prevents bacteria from growing.
The gases prevents the chemical oxidation by the oxygen in the normal air.
Helium is used in oxygen cylinders and also as a coolant in gas cooled reactors.
<span>Plants use green pigments called chlorophylls to trap light energy. The
chlorophylls give a plant its green color. Inside the cells that have
chloroplasts, the light energy is used to make a simple sugar called glucose.
The process by which plants use light energy to make glucose is called
photosynthesis.
During this process of sugar production, carbon dioxide combines with water to
form glucose and oxygen is released. Oxygen that is produced in photosynthesis
is given off as a gas. If a lot of oxygen is being given off, photosynthesis is
occurring rapidly. If little oxygen is being given off, photosynthesis is
occurring slowly. The amount of trapped light energy and the amount of carbon
dioxide available affects the rate of photosynthesis.
The purpose of adding sodium bicarbonate powder to the water increases the
amount of carbon dioxide in the water. hope this helped
This investigation can be performed with water plants grown in many parts of
the world, except regions that have permanent ice.</span>
Answer: Option (A) is the correct answer.
Explanation:
Rate of diffusion is defined as the total movement of molecules from a region of higher concentration to lower concentration.
The interaction between medium and the material is responsible for the rate of diffusion of a material or substance.
A small concentration gradient means small difference in the number of molecules taking part in a reaction. So, when there no large difference between the concentration then there won't be much difference in the rate of diffusion of a material.
Whereas a higher concentration of molecules will lead to more number of collisions due to which frequency of molecules increases. Therefore, rate of diffusion will also increase.
Small molecule size will also lead to increases in rate of diffusion. This is because according to Graham's law rate of diffusion is inversely proportional to molar mass of an element. Hence, smaller size molecule will have smaller mass. As a result, rate of diffusion will be more.
High temperature means more kinetic energy of molecules due to which more number of collisions will be there. Hence, rate of diffusion will also increase.
Thus, we can conclude that out of the given options a small concentration gradient is least likely to increase the rate of diffusion.
Answer:
Answer is Object 2 (which has a density of 1.9 g/cm³).
Explanation;
When object is floating, the weight of that object is less than the up thrust on it.
When an object fully submerged and floating, then the weight of that object is equal to the up thrust on it.
This is known as the Archemide's principle.
Both up thrust and weight depends on the density. Hence, if the density of the solution is high, then the up thrust also high. If the density high, the the weight of the object also high.
Hence, to sink the object in water, that object should be denser than water. Hence, answer is object 3 which has a higher density than water.
Explanation: