The partial pressure of methane in the mixture of methane and ethane has been 1 atm.
Partial pressure has been the pressure exerted by a gas in the solution or mixture. The partial pressure of each gas has been the total pressure of the gaseous mixture.
The partial pressure of the gas has been dependent on the volume, temperature, and concentration of the gas.
The given methane has a partial pressure of 1 atm in the 15 L vessel. The addition of ethane results in the change in the total pressure of the mixture, as there have been additional moles of solute that contributes to the solution pressure.
However, since there has been no change in the concentration and volume of methane, the pressure exerted by methane has been the same. Thus, the partial pressure of methane has been 1 atm.
For more information about the partial pressure, refer to the link:
brainly.com/question/14623719
The copper wire was sanded before burning in order to make sure that copper metal was exposed on the surface of the wire.
Answer: B
Explanation
The copper wire when placed in atmosphere without coating leads to oxidation of copper metal with respect to the impurities present in the atmosphere.
As copper is electropositive in nature, so electronegative ions present in the universe will try to react with copper and the copper will react easily with other elements.
So generally copper wire is coated with color or polymer coating.
In this case, the copper wire without any coating is sanded, so that the eddy sheets or polishing materials on friction with copper wire will remove the impurities by the electrostatic law of conservation of charges and charge transfer.
As the impurities are removed when copper wire is sanded, the copper atoms will be exposed on the surface of the wire leading to burning of copper in the copper wire.
Remember this.
Ionic molecules has ionic bonds
Nonpolar molecules has dispersion (Van del Waals)
Polar molecules could either have hydrogen bonding or Dipole-Dipole. Hydrogen bonding is when you have F, O or N with H, every other polar molecule is dipole-dipole.
a. polar- dipole-dipole
b. polar- hydrogen bonding
c. nonpolar- dispersion
d. nonpolar- dispersion
e. polar- dipole-dipole
f. polar-dipole-dipole
g. nonpolar- dispersion
h. polar- hydrogen bonding.
The balanced chemical equation would be as follows:
<span>K2PtCl4(aq) + 2NH3(aq) --> Pt(NH3)2Cl2(s) + 2KCl(aq)
We are given the amount of </span>K2PtCl4 to be used in the reaction. This will be the starting point for our calculations. We do as follows:
65 g K2PtCl4 ( 1 mol / 415.09 g ) ( 1 mol Pt(NH3)2Cl2 / 1 mol K2PtCl ) ( 300.051 g / 1 mol ) = 46.99 g Pt(NH3)2Cl produced