4.2 times 39.37 = 165.354
Answer:
B
Step-by-step explanation:
It sounds most likely to the right answer
¯\_(ツ)_/¯
Answer:
The equation that represents the population after T years is
![P_{t} = 7,632,819,325 [1 +\frac{1.09}{100} ]^{T}](https://tex.z-dn.net/?f=P_%7Bt%7D%20%20%3D%207%2C632%2C819%2C325%20%5B1%20%2B%5Cfrac%7B1.09%7D%7B100%7D%20%5D%5E%7BT%7D)
Step-by-step explanation:
Population in the year 2018 ( P )= 7,632,819,325
Rate of increase R = 1.09 %
The population after T years is given by the formula
-------- (1)
Where P = population in 2018
R = rate of increase
T = time period
Put the values of P & R in above equation we get
![P_{t} = 7,632,819,325 [1 +\frac{1.09}{100} ]^{T}](https://tex.z-dn.net/?f=P_%7Bt%7D%20%20%3D%207%2C632%2C819%2C325%20%5B1%20%2B%5Cfrac%7B1.09%7D%7B100%7D%20%5D%5E%7BT%7D)
This is the equation that represents the population after T years.
Answer:
answer 11
Step-by-step explanation:
I think it the right answer