Answer: The critical value for a two-tailed t-test = 2.056
The critical value for a one-tailed t-test = 1.706
Step-by-step explanation:
Given : Degree of freedom : df= 26
Significance level : 
Using student's t distribution table , the critical value for a two-tailed t-test will be :-

The critical value for a two-tailed t-test = 2.056
Again, Using student's t distribution table , the critical value for a one-tailed t-test will be :-

The critical value for a one-tailed t-test = 1.706
1)
here, we do the left-hand-side
![\bf [sin(x)+cos(x)]^2+[sin(x)-cos(x)]^2=2 \\\\\\\ [sin^2(x)+2sin(x)cos(x)+cos^2(x)]\\\\+~ [sin^2(x)-2sin(x)cos(x)+cos^2(x)] \\\\\\ 2sin^2(x)+2cos^2(x)\implies 2[sin^2(x)+cos^2(x)]\implies 2[1]\implies 2](https://tex.z-dn.net/?f=%5Cbf%20%5Bsin%28x%29%2Bcos%28x%29%5D%5E2%2B%5Bsin%28x%29-cos%28x%29%5D%5E2%3D2%0A%5C%5C%5C%5C%5C%5C%5C%0A%5Bsin%5E2%28x%29%2B2sin%28x%29cos%28x%29%2Bcos%5E2%28x%29%5D%5C%5C%5C%5C%2B~%20%5Bsin%5E2%28x%29-2sin%28x%29cos%28x%29%2Bcos%5E2%28x%29%5D%0A%5C%5C%5C%5C%5C%5C%0A2sin%5E2%28x%29%2B2cos%5E2%28x%29%5Cimplies%202%5Bsin%5E2%28x%29%2Bcos%5E2%28x%29%5D%5Cimplies%202%5B1%5D%5Cimplies%202)
2)
here we also do the left-hand-side
![\bf \cfrac{2-cos^2(x)}{sin(x)}=csc(x)+sin(x) \\\\\\ \cfrac{2-[1-sin^2(x)]}{sin(x)}\implies \cfrac{2-1+sin^2(x)}{sin(x)}\implies \cfrac{1+sin^2(x)}{sin(x)} \\\\\\ \cfrac{1}{sin(x)}+\cfrac{sin^2(x)}{sin(x)}\implies csc(x)+sin(x)](https://tex.z-dn.net/?f=%5Cbf%20%5Ccfrac%7B2-cos%5E2%28x%29%7D%7Bsin%28x%29%7D%3Dcsc%28x%29%2Bsin%28x%29%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7B2-%5B1-sin%5E2%28x%29%5D%7D%7Bsin%28x%29%7D%5Cimplies%20%5Ccfrac%7B2-1%2Bsin%5E2%28x%29%7D%7Bsin%28x%29%7D%5Cimplies%20%5Ccfrac%7B1%2Bsin%5E2%28x%29%7D%7Bsin%28x%29%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7B1%7D%7Bsin%28x%29%7D%2B%5Ccfrac%7Bsin%5E2%28x%29%7D%7Bsin%28x%29%7D%5Cimplies%20csc%28x%29%2Bsin%28x%29)
3)
here, we do the right-hand-side
Answer:
12313
Step-by-step explanation:
If an is a5
and
an-1 is a4
then using your recursive formula for an arithmetic sequence
an=an-1 +d
then
a5=a4+d
now, a4 =6 and common difference "d" is d=-11
hence
a5=6 -11
6-11= -5
any questions?
Answer:
m∠ABD = 88º
m∠CBD = 23º
Step-by-step explanation:
(-10x + 58) + (6x + 41) = 111
Combine like terms
-4x + 99 = 111
Subtract 99 from both sides
-4x = 12
Divide both sides by -4
x = -3
------------------------
m∠ABD = -10x + 58
m∠ABD = -10(-3) + 58
m∠ABD = = 30 + 58
m∠ABD = 88º
m∠CBD = 6x + 41
m∠CBD = 6(-3) + 41
m∠CBD = -18 + 41
m∠CBD = 23º