1)
LHS = cot(a/2) - tan(a/2)
= (1 - tan^2(a/2))/tan(a/2)
= (2-sec^2(a/2))/tan(a/2)
= 2cot(a/2) - cosec(a/2)sec(a/2)
= 2(1+cos(a))/sin(a) - 1/(cos(a/2)sin(a/2))
= 2 (1+cos(a))/sin(a) - 2/sin(a)) (product to sums)
= 2[(1+cos(a) -1)/sin(a)]
=2cot a
= RHS
2.
LHS = cot(b/2) + tan(b/2)
= [1 + tan^2(b/2)]/tan(b/2)
= sec^2(b/2)/tan(b/2)
= 1/sin(b/2)cos(b/2)
using product to sums
= 2/sin(b)
= 2cosec(b)
= RHS
Answer: 9 associate property 8 commutative property
Step-by-step explanation:
The answer is: [A]: " 20a − 5b − 9 " .
______________________________________
Explanation:
_______________________________________________
(12a <span>+ 7b) + (−6a − 9) + (14a − 12b) =
12a </span><span>+ 7b + 1(−6a − 9) + 1(14a − 12b) =
</span>
12a + 7b + (1*-6a) + (1*-9) + (1*14a) + (1* -12b) =
12a + 7b − 6a − 9 + 14a − 12b = ?
Combine the "like terms:
12a − 6a + 14a = 20a ;
7b − 12b = - 5b ;
and then we have "-9" ;
_____________________________________________________
So, write as: " 20a − 5b − 9 " ; which is: Answer choice: [A].
______________________________________________________
I hope this helps you
f (1+1)= f (1)+8
f (2)= 27+8
f (2)=35
f (2+1)= f (2)+8
f (3)= 35+8
f (3)=43
Answer:
Part A. x = 1/26 Part B. x = 1/50
Step-by-step explanation:
Solve for x:
26 x = 1
Divide both sides by 26:
Answer: x = 1/26
___________________
Solve for x:
50 x = 1
Divide both sides by 50:
Answer: x = 1/50