Answer:
oil and vinegar
the rest would mix well so you can't determine the individual components
Explanation:
This is a combustion reaction. Any reaction in which a hydrocarbon decomposes into carbon dioxide and water is classified as combustion. The energy used for the decomposition usually comes from intense heat, which is why combustion of a hydrocarbon almost always is associated with a source of fire.
the answer is 133
because thats how the water is
Answer:
NO will be the limiting reagent.
Explanation:
The balanced equation is:
2 NO + 2 CO → N₂ + 2 CO₂
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
- NO: 2 moles
- CO: 2 moles
- N₂: 1 mole
- CO₂: 2 moles
Being the molar mass of each compound:
- NO: 30 g/mole
- CO: 28 g/mole
- N₂: 28 g/mole
- CO₂: 44 g/mole
Then by stoichiometry the following quantities of mass participate in each reaction:
- NO: 2 moles* 30 g/mole= 60 g
- CO: 2 moles* 28 g/mole= 56 g
- N₂: 1 mole* 28 g/mole= 28 g
- CO₂: 2 moles* 44 g/mole= 88 g
The limiting reagent is one that is consumed first in its entirety, determining the amount of product in the reaction. When the limiting reagent is finished, the chemical reaction will stop.
To determine the limiting reagent, you can use a simple rule of three as follows: If 56 grams of CO react with 60 grams of NO, 3 grams of CO react with how much mass of NO?

mass of NO= 3.21 grams
But 3.21 grams of NO are not available, 3 grams are available. Since you have less moles than you need to react with 3 grams of CO, <u><em>NO will be the limiting reagent.
</em></u>
<u><em></em></u>
The balanced chemical reaction for this would be written as:
2Mg + O2 = 2MgO
We use this reaction and the amount of the reactant given to calculate for the amount of magnesium oxide that is produced. We do as follows:
1.5 g Mg (1 mol / 24.31 g) ( 2 mol MgO / 2 mol Mg ) (40.30 g /1 mol ) = 2.49 g MgO produced