AgF consists of Ag+ and F- ions, which are fully dissociated in aqueous solution. When solving electrolysis problems, it is important to remember that water itself may also be a subject to electrolysis. Therefore, determining which species is oxidized and which species is reduced depends on selecting the processes that are the most energetically favorable. The most preferred reduction reaction will be Ag+ + e- = Ag (Emf=0.7996 V) which will occur at the cathode, on the other hand, the most favorable oxidation reaction will be
2H2O = O2 +4H+ + 4e- (Emf = -1.3 V) that will occur at the anode. Thus, the product at the anode is oxygen gas and at the cathode electrode is silver metal.
Answer:
0.12M
Explanation:
A balanced equation for the reaction will go a great deal in obtaining our desired result. So, let us write a balanced equation for the reaction
HCl + NaOH —> NaCl + H2O
From the above equation,
nA (mole of the acid) = 1
nB (mole of the base) = 1
Data obtained from the question include:
Vb (volume of the base) = 30mL
Mb (Molarity of the base) = 0.1M
Va (volume of the acid) = 25mL
Ma (Molarity of the acid) =?
The molarity of the acid can be obtained as follow:
MaVa/MbVb = nA/nB
Ma x 25/ 0.1 x 30 = 1
Cross multiply to express in linear form
Ma x 25 = 0.1 x 30
Divide both side by 25
Ma = (0.1 x 30) / 25
Ma = 0.12M
The molarity of the acid is 0.12M
Answer:
1. 0.02 M
2. 0.01 M
3. 4×10⁻⁶
Explanation:
We know that V₁S₁ = V₂S₂
1.
Concentration of HCl = 0.05 M
end point comes at = 10 ml
So, concentration of OH⁻(aq) = [OH⁻(aq)] ⇒ (0.05 × 10) ÷ 25 ⇒ 0.02 M
2.
2mol of OH⁻(aq) ≡ 1 mole of Ca²⁺(aq)
[Ca²⁺] = 0.02 ÷ 2 = 0.01 M
3.
= [Ca²⁺(aq)] [OH⁻(aq)]²
Ca(OH)₂ (aq) ⇄ Ca²⁺ (aq) + 2OH⁻ (aq)
= [0.01 × (0.02)²] = 4×10⁻⁶
4.
If reaction is exothermic which means heat energy will get evolved as a result temperature of the reaction media will get increased during the course of the reaction. If temperature is externally increased, the reaction will go backward to accumulate extra heat energy.
5.
value describes the solubility of a particular ionic compound. The higher the
value, the higher the Solubility will be.
6.
This may be due to uncommon ion effect. The process of other ions (K⁺ or Na⁺) may increase the solubility
Rubidium or strontium have larger a larger atomic radius since the further left on the periodic table you go, the larger the sizes of the atoms are. This trend can be explained through effective nuclear charge which explains how the further left and down you go, the less the atoms nucleus is able to pull in the electrons around it.<span />