In an acidic solution, the concentration of H+ is greater than the concentration of OH-. The pH will be less than 7.
In a basic solution, the concentration of OH- is greater than the concentration of H+. The pH will be greater than 7.
In a neutral solution, the concentration of H+ ions to OH-ions will be equal, and will therefore have a pH of 7. (This is due to water autoionization, which we usually ignore because it is small in other circumstances.)
Answer:
K3PO4
Explanation:
Recall that colligative properties depends on the number of particles present. The greater the number of particles present, the greater the degree of colligative properties of the solution. Let us look at each option individually;
SrCr2O7-------> Sr^2+ + Cr2O7^2- ( 2 particles)
C4H11N (not ionic in nature hence it can not dissociate into ions)
K3PO4-------> 3K^+ + PO4^3- (4 particles)
Rb2CO3-------> 2Rb^+ + CO3^2- (3 particles)
Hence K3PO4 has the greatest number of particles and will display the greatest colligative effect.
Answer:
D. 4
Explanation:
Answer and Explanation: Carbon can form a maximum of four covalent bonds. Carbon can share up to four pairs of electrons, therefore, the carbon atom fills its outer energy level and achieves chemical stability.
<span>0.48 grams.
Not a well worded question since it's assuming I know the reactions. But I'll assume that since there's just 1 atom of copper per molecule of Cu(NO3)2, that the reaction will result in 1 atom of copper per molecule of Cu(NO3)2 used. With that in mind, we will have 0.010 l * 0.75 mol/l = 0.0075 moles of copper produced.
To convert the amount in moles, multiply by the atomic weight of copper, which is 63.546 g/mol. So
0.0075 mol * 63.546 g/mol = 0.476595 g.
Round the results to 2 significant figures, giving 0.48 grams.</span>
Answer:

Explanation:
Here, we want to convert J to cal
Mathematically:

Thus, to get our answer in cal, we divide the value given by 4.186
We have that as: