<h2>Relative Humidity</h2>
Explanation:
- Humidity is the amount of moisture content present in the atmosphere.
Humidity is of two types:
- Absolute humidity.
- Relative humidity.
- Absolute humidity is the ratio of the amount of moisture content in the air to the unit volume of the air.
- Relative humidity can be derived as the ratio of moisture content in the air to the maximum amount of moisture that the air constitutes.
- Hence, the required answer is Relative humidity.
Element at Extreme Left In Periodic Table:
The elements of Group I-A (1) are present at extreme left of the periodic table. They are called as Alkali Metals. Alkali Metals are strong metals. These elements can easily loose their valence electron. The valence shell electronic configuration of these elements is,
ns¹
where n is principle quantum number, which shows main energy level or shell. These metals can gain Noble gas configuration (stable configuration) either by loosing one electron or by gaining seven or more electrons. As it is quite reasonable to loose one electron instead of gaining seven or more electrons so these element easily loose one electron to gain noble as configuration. The Metallic character decreases along the period from left to right. So Group II-A (2) are second most metallic elements and so on. These metals at extreme left mainly exist in solid form.
Element at Extreme Right In Periodic Table:
Elements present at extreme right of the periodic table lacks the properties of metallic character and act as non-Metals. They have almost complete outermost shell or have the deficiency of one or two electrons. They are not as hard as metallic elements and they exist with complete octet like in Noble gases, or deficient with one electron (Halogens) or two electrons (oxygen group). These elements tend to gain or accept electron if their valence shell is deficient with required number of elements. Like the valence electronic configuration of Halogens is,
ns², np⁵
So, Halogens readily accept one electron and attain noble gas configuration. Elements at extreme left exist mainly in gas phase.
A. The heat is needed to melt 100.0 grams of ice that is already at 0°C is +33,400 J.
<h3>What is Specific heat capacity?</h3>
Specific heat capacity is the quantity of heat needed to raise the temperature per unit mass.
<h3>
Heat needed to melt the cube of ice</h3>
The heat is needed to melt 100.0 grams of ice that is already at 0°C is calculated as follows;
Q = mL
where;
- m is mass of the ice
- L is latent heat of fusion of ice = 334 J/g
Q = 100 x 334
Q = 33,400 J
Thus, the heat is needed to melt 100.0 grams of ice that is already at 0°C is +33,400 J.
Learn more about heat capacity here: brainly.com/question/16559442
#SPJ1
I would say B but I am not sure so sorry if it is wrong!!
The melting point of potassium = 
Melting point of titanium = 
Titanium has a stronger metallic bonding compared to potassium. Titanium being a transition metal has greater number of valence electrons (4 valence electrons) contributing to the valence electron sea compared to potassium which has only one valence electron. The atomic size of Titanium much lower than that of potassium, so the bonding between Titanium atoms is stronger than that of potassium. Hence, the melting point of Titanium is much higher than that of potassium.