Answer: The number you reach would be -4
Step-by-step explanation:
The maximum number of hours for which you can rent the scooter is: 4 hours
<h3>Cost of renting;</h3>
According to the question;
- The maximum amount you can spend for renting a motor scooter is $50
- The rental fee is $12 and the cost per hour is $9.50.
The inequality to determine the maximum number of hours you can rent the scooter is;
Solving the inequality, we have;
h <= 4hours.
Read more on cost of renting;
brainly.com/question/10563785
Answer:
Moderate
Step-by-step explanation:
I think sorry if its wrong
There are 150 9th graders and 300 10th graders
Part A
Answers:
Mean = 5.7
Standard Deviation = 0.046
-----------------------
The mean is given to us, which was 5.7, so there's no need to do any work there.
To get the standard deviation of the sample distribution, we divide the given standard deviation s = 0.26 by the square root of the sample size n = 32
So, we get s/sqrt(n) = 0.26/sqrt(32) = 0.0459619 which rounds to 0.046
================================================
Part B
The 95% confidence interval is roughly (3.73, 7.67)
The margin of error expression is z*s/sqrt(n)
The interpretation is that if we generated 100 confidence intervals, then roughly 95% of them will have the mean between 3.73 and 7.67
-----------------------
At 95% confidence, the critical value is z = 1.96 approximately
ME = margin of error
ME = z*s/sqrt(n)
ME = 1.96*5.7/sqrt(32)
ME = 1.974949
The margin of error is roughly 1.974949
The lower and upper boundaries (L and U respectively) are:
L = xbar-ME
L = 5.7-1.974949
L = 3.725051
L = 3.73
and
U = xbar+ME
U = 5.7+1.974949
U = 7.674949
U = 7.67
================================================
Part C
Confidence interval is (5.99, 6.21)
Margin of Error expression is z*s/sqrt(n)
If we generate 100 intervals, then roughly 95 of them will have the mean between 5.99 and 6.21. We are 95% confident that the mean is between those values.
-----------------------
At 95% confidence, the critical value is z = 1.96 approximately
ME = margin of error
ME = z*s/sqrt(n)
ME = 1.96*0.34/sqrt(34)
ME = 0.114286657
The margin of error is roughly 0.114286657
L = lower limit
L = xbar-ME
L = 6.1-0.114286657
L = 5.985713343
L = 5.99
U = upper limit
U = xbar+ME
U = 6.1+0.114286657
U = 6.214286657
U = 6.21