The intensity of an earthquake with a magnitude of 2 is 100 times greater than the intensity of an a standard earthquake .
<h3>
What is magnitude of earthquake
?</h3>
Magnitude of earthquake is the measure of the size of origin of the earthquake. The magnitude of the earthquake keeps the same value for each place.
An earthquake with a magnitude of about 2. 0 or less is called a micro-earthquake and not felt usually.The intensity of an earthquake with a magnitude of 2.
Let the intensity of this earthquake is <em>n </em>times greater than the intensity of an a standard earthquake. Thus the intensity of standard earthquake can be given as,

If the magnitude would be 3 then the intensity would be,

It would be 1000 times greater than the standard earthquake and so on.
Thus, the intensity of an earthquake with a magnitude of 2 is 100 times greater than the intensity of an a standard earthquake .
Learn more about the magnitude of earthquake here;
brainly.com/question/18109453
<h3>
Answer: A and B (first answer choice)</h3>
Explanation:
Both figures shown in A and B are triangular pyramids. The base is a triangle, and the lateral sides are also triangles. Another example would be rectangular pyramids where the base is a rectangle, and the lateral sides are triangles.
Choice C is ruled out because cones aren't considered pyramids.
Choice D is a combination of a rectangular prism, and a rectangular pyramid stacked on top, so it's not purely a pyramid only. We can rule out choice D.
Answer:
x = -2, x = 3 − i√8, and x = 3 + i√8
Step-by-step explanation:
g(x) = x³ − 4x² − x + 22
This is a cubic equation, so it must have either 1 or 3 real roots.
Using rational root theorem, we can check if any of those real roots are rational. Possible rational roots are ±1, ±2, ±11, and ±22.
g(-1) = 18
g(1) = 18
g(-2) = 0
g(2) = 12
g(-11) = 1782
g(11) = 858
g(-22) = -12540
g(22) = 8712
We know -2 is a root. The other two roots are irrational. To find them, we must find the other factor of g(x). We can do this using long division, or we can factor using grouping.
g(x) = x³ − 4x² − 12x + 11x + 22
g(x) = x (x² − 4x − 12) + 11 (x + 2)
g(x) = x (x − 6) (x + 2) + 11 (x + 2)
g(x) = (x (x − 6) + 11) (x + 2)
g(x) = (x² − 6x + 11) (x + 2)
x² − 6x + 11 = 0
Quadratic formula:
x = [ 6 ± √(36 − 4(1)(11)) ] / 2
x = (6 ± 2i√8) / 2
x = 3 ± i√8
The three roots are x = -2, x = 3 − i√8, and x = 3 + i√8.
Answer:
B
Step-by-step explanation:
easy
Just plug in -1 for x and u should get ur answer