Answer:
108
Step-by-step explanation:
can i have brainliest?
Answer:
11/20
Step-by-step explanation:
The opposite angles are equal to are supplementary to each other or equal to each other.
<h3>What is a Quadrilateral Inscribed in a Circle?</h3>
In geometry, a quadrilateral inscribed in a circle, also known as a cyclic quadrilateral or chordal quadrilateral, is a quadrilateral with four vertices on the circumference of a circle. In a quadrilateral inscribed circle, the four sides of the quadrilateral are the chords of the circle.
The opposite angles in a cyclic quadrilateral are supplementary. i.e., the sum of the opposite angles is equal to 180˚.
If e, f, g, and h are the inscribed quadrilateral’s internal angles, then
e + f = 180˚ and g + h = 180˚
by theorem the central angle = 2 x inscribed angle.
∠COD = 2∠CBD
∠COD = 2b
∠COD = 2 ∠CAD
∠COD = 2a
now,
∠COD + reflex ∠COD = 360°
2e + 2f = 360°
2(e + f) =360°
e + f = 180°.
Learn more about this concept here:
brainly.com/question/16611641
#SPJ1
Answer:
If a graph is an Euler Circuit that mean that it can be traversed and begins and has all even verticies. This allows you to start and stop at the same verticie.
Step-by-step explanation: