The maximum shear stress in the tube when the power is transmitted through a 4: 1 gearing is 28.98 MPa.
<h3>What is power?</h3>
Power is the energy transferred per unit time.
Torque is find out by
P = 2πNT/60
10000 = 2π x 2000 x T / 60
T =47.74 N.m
The gear ratio Ne / Ns =4/1
Ns =2000/4 = 500
Ts =Ps x 60/(2π x 500)
Ts =190.96 N.m
Maximum shear stress τ = 16/π x (T / (d₀⁴ - d₁⁴))
τ max =T/J x D/2
where d₁ = 30mm = 0.03 m
d₀ = 30 +(2x 4) = 38mm =0.038 m
Substitute the values into the equation, we get
τ max = 16 x 190.96 x 0.038 /π x (0.038⁴ - 0.03⁴)
τ max = 28.98 MPa.
Thus, the maximum shear stress in the tube is 28.98 MPa.
Learn more about power.
brainly.com/question/13385520
#SPJ1
Answer:
1,2,3,5
Explanation:
Not positive but i think so
Answer:
shear strength = 2682.31 Ib/ft^2
Explanation:
major principal stress = 100 Ib / in2
minor principal stress = 20 Ib/in2
Normal stress = 3000 Ib/ft2
<u>Determine the shear strength when direct shear test is performed </u>
To resolve this we will apply the coulomb failure criteria relationship between major and minor principal stress a
for direct shear test
use Mohr Coulomb criteria relation between normal stress and shear stress
Shear strength when normal strength is 3000 Ib/ft = 2682.31 Ib/ft^2
attached below is the detailed solution
Answer:
I would like to help can you take a picture without the bot telling you something. Maybe then I can figure it out.
Uhm is there a multiple choice?