Answer:
See explanation below
Explanation:
Hypo-eutectoid steel has less than 0,8% of C in its composition.
It is composed by pearlite and α-ferrite, whereas Hyper-eutectoid steel has between 0.8% and 2% of C, composed by pearlite and cementite.
Ferrite has a higher tensile strength than cementite but cementite is harder.
Considering that hypoeutectoid steel contains ferrite at grain boundaries and pearlite inside grains whereas hypereutectoid steel contains a higher amount of cementite, the following properties are obtainable:
Hypo-eutectoid steel has higher yield strength than Hyper-eutectoid steel
Hypo-eutectoid steel is more ductile than Hyper-eutectoid steel
Hyper-eutectoid steel is harder than Hyper-eutectoid steel
Hypo-eutectoid steel has more tensile strength than Hyper-eutectoid steel.
When making a knife or axe blade, I would choose Hyper-eutectoid steel alloy because
1. It is harder
2. It has low cost
3. It is lighter
When making a die to press powders or stamp a softer metals, I will choose hypo-eutectoid steel alloy because
1. It is ductile
2. It has high tensile strength
3. It is durable
Answer:
A) i) 984.32 sec
ii) 272.497° C
B) It has an advantage
C) attached below
Explanation:
Given data :
P = 2700 Kg/m^3
c = 950 J/kg*k
k = 240 W/m*K
Temp at which gas enters the storage unit = 300° C
Ti ( initial temp of sphere ) = 25°C
convection heat transfer coefficient ( h ) = 75 W/m^2*k
<u>A) Determine how long it takes a sphere near the inlet of the system to accumulate 90% of the maximum possible energy and the corresponding temperature at the center of sphere</u>
First step determine the Biot Number
characteristic length( Lc ) = ro / 3 = 0.0375 / 3 = 0.0125
Biot number ( Bi ) = hLc / k = (75)*(0.0125) / 40 = 3.906*10^-3
Given that the value of the Biot number is less than 0.01 we will apply the lumped capacitance method
attached below is a detailed solution of the given problem
<u>B) The physical properties are copper</u>
Pcu = 8900kg/m^3)
Cp.cu = 380 J/kg.k
It has an advantage over Aluminum
C<u>) Determine how long it takes a sphere near the inlet of the system to accumulate 90% of the maximum possible energy and the corresponding temperature at the center of sphere</u>
Given that:
P = 2200 Kg/m^3
c = 840 J/kg*k
k = 1.4 W/m*K
Answer:
Set the direction of the car. ...
Provide stability to the car while running. ...
Prevents vibrations from reaching the steering wheel. ...
Minimize tire wear. ...
Provides a straightening effect to the front wheels.
Answer:
The head difference across the soil specimen is 39.29 cm and the discharge velocity is 0.02 cm/s
Explanation:
The head difference across the soil specimen is:

Where
k = hydraulic conductivity = 0.014 cm/s
Q = volume of water collected = 150 cm³/min = 2.5cm³/s
L = length of the soil specimen = 275 mm = 27.5 cm
A = area = 125 cm²
Replacing:

The hydraulic gradient is:

The discharge velocity is:
v = k*i = 0.014 * 1.43 = 0.02 cm/s