Answer:
no solution
Step-by-step explanation:
p-4=-9+p
p=-5+p
0=-5
Answer:
The population of bacteria can be expressed as a function of number of days.
Population =
where n is the number of days since the beginning.
Step-by-step explanation:
Number of bacteria on the first day=![\[5 * 2^{0} = 5\]](https://tex.z-dn.net/?f=%5C%5B5%20%2A%202%5E%7B0%7D%20%3D%205%5C%5D)
Number of bacteria on the second day = ![\[5 * 2^{1} = 10\]](https://tex.z-dn.net/?f=%5C%5B5%20%2A%202%5E%7B1%7D%20%3D%2010%5C%5D)
Number of bacteria on the third day = ![\[5*2^{2} = 20\]](https://tex.z-dn.net/?f=%5C%5B5%2A2%5E%7B2%7D%20%3D%2020%5C%5D)
Number of bacteria on the fourth day = ![\[5*2^{3} = 40\]](https://tex.z-dn.net/?f=%5C%5B5%2A2%5E%7B3%7D%20%3D%2040%5C%5D)
As we can see , the number of bacteria on any given day is a function of the number of days n.
This expression can be expressed generally as
where n is the number of days since the beginning.
You can find counterexamples to disprove this claim. We have positive integers that are perfect square numbers; when we take the square root of those numbers, we get an integer.
For example, the square root of 1 is 1, which is an integer. So if y = 1, then the denominator becomes an integer and thus we get a quotient of two integers (since x is also defined to be an integer), the definition of a rational number.
Example: x = 2, y = 1 ends up with
which is rational. This goes against the claim that
is always irrational for positive integers x and y.
Any integer y that is a perfect square will work to disprove this claim, e.g. y = 1, y = 4, y= 9, y = 16. So it is not always irrational.
Answer:
A)2100 ml
Step-by-step explanation:
Given total vinegar is 3 1/2 liters and the used vinegar is 3/5 of the vinegar in the beaker:
#First calculate the amount of vinegar not poured in the beaker:

#Calculate amount of vinegar used in experiment:

#The unused vinegar is therefore calculated by subtracting the used vinegar from the total at the start of the experiment:

Hence, the unused vinegar is 2100 ml
Answer:
x=m2-67
Step-by-step explanation: