Answer:
Step-by-step explanation:
50
Answer:
1: Rhombus
2: Square
3: Rectangle
4: Trapezoid (isosceles trapezoid to be exact)
Dy/dx = y/(x^2)
dy/y = dx/(x^2)
int[dy/y] = int[dx/(x^2)] ... apply integral to both sides
ln(|y|) = (-1/x) + C
|y| = e^{(-1/x) + C}
|y| = e^C*e^(-1/x)
|y| = C*e^(-1/x)
y = C*e^(-1/x)
So you have the correct answer. Nice job.
------------------------------------------------
Check:
y = C*e^(-1/x)
dy/dx = d/dx[C*e^(-1/x)]
dy/dx = d/dx[-1/x]*C*e^(-1/x)
dy/dx = (1/(x^2))*C*e^(-1/x)
is the expression for the left hand side (LHS)
y/(x^2) = [C*e^(-1/x)]/(x^2)
y/(x^2) = (1/(x^2))*C*e^(-1/x)
is the expression for the right hand side (RHS)
Since LHS = RHS, this confirms the solution for dy/dx = y/(x^2)
Answer:
.4
Step-by-step explanation:
Root of 12 is 3.5
Root of 15 is 3.9
3.9 - 3.5 = .4