The answer is the Parallelogram
Answer:
To multiply these two terms you multiply each individual term in the left parenthesis by each individual term in the right parenthesis.
(
x
+
5
)
(
x
+
2
)
becomes:
(
x
×
x
)
+
(
x
×
2
)
+
(
5
×
x
)
+
(
5
×
2
)
x
2
+
2
x
+
5
x
+
10
We can now combine like terms:
x
2
+
(
2
+
5
)
x
+
10
x
2
+
7
x
+
10
Step-by-step explanation:
Answer:
B 7feet
Step-by-step explanation:
Side a = 24
Side b = 25
Side c = 7
Angle ∠A = 73.74° = 73°44'23" = 1.287 rad
Angle ∠B = 90° = 1.5708 rad = π/2
Angle ∠C = 16.26° = 16°15'37" = 0.28379 rad
C=16.26°B=90°A=73.74°b=25a=24c=7
Area = 84
Perimeter p = 56
Semiperimeter s = 28
Height ha = 7
Height hb = 6.72
Height hc = 24
First you would add the two angles together to get 105. The. you do 180-105 to get 75. That is the missing angle. From there you would correspond the angles with the sides. Therefore the answer is Angle AB, angle BC, angle CA. these are in order from shortest to longest
Compute the definite integral:
integral_0^1 (5 x + 8)/(x^2 + 3 x + 2) dx
Rewrite the integrand (5 x + 8)/(x^2 + 3 x + 2) as (5 (2 x + 3))/(2 (x^2 + 3 x + 2)) + 1/(2 (x^2 + 3 x + 2)):
= integral_0^1 ((5 (2 x + 3))/(2 (x^2 + 3 x + 2)) + 1/(2 (x^2 + 3 x + 2))) dx
Integrate the sum term by term and factor out constants:
= 5/2 integral_0^1 (2 x + 3)/(x^2 + 3 x + 2) dx + 1/2 integral_0^1 1/(x^2 + 3 x + 2) dx
For the integrand (2 x + 3)/(x^2 + 3 x + 2), substitute u = x^2 + 3 x + 2 and du = (2 x + 3) dx.
This gives a new lower bound u = 2 + 3 0 + 0^2 = 2 and upper bound u = 2 + 3 1 + 1^2 = 6: = 5/2 integral_2^6 1/u du + 1/2 integral_0^1 1/(x^2 + 3 x + 2) dx
Apply the fundamental theorem of calculus.
The antiderivative of 1/u is log(u): = (5 log(u))/2 right bracketing bar _2^6 + 1/2 integral_0^1 1/(x^2 + 3 x + 2) dx
Evaluate the antiderivative at the limits and subtract.
(5 log(u))/2 right bracketing bar _2^6 = (5 log(6))/2 - (5 log(2))/2 = (5 log(3))/2: = (5 log(3))/2 + 1/2 integral_0^1 1/(x^2 + 3 x + 2) dx
For the integrand 1/(x^2 + 3 x + 2), complete the square:
= (5 log(3))/2 + 1/2 integral_0^1 1/((x + 3/2)^2 - 1/4) dx
For the integrand 1/((x + 3/2)^2 - 1/4), substitute s = x + 3/2 and ds = dx.
This gives a new lower bound s = 3/2 + 0 = 3/2 and upper bound s = 3/2 + 1 = 5/2: = (5 log(3))/2 + 1/2 integral_(3/2)^(5/2) 1/(s^2 - 1/4) ds
Factor -1/4 from the denominator:
= (5 log(3))/2 + 1/2 integral_(3/2)^(5/2) 4/(4 s^2 - 1) ds
Factor out constants:
= (5 log(3))/2 + 2 integral_(3/2)^(5/2) 1/(4 s^2 - 1) ds
Factor -1 from the denominator:
= (5 log(3))/2 - 2 integral_(3/2)^(5/2) 1/(1 - 4 s^2) ds
For the integrand 1/(1 - 4 s^2), substitute p = 2 s and dp = 2 ds.
This gives a new lower bound p = (2 3)/2 = 3 and upper bound p = (2 5)/2 = 5:
= (5 log(3))/2 - integral_3^5 1/(1 - p^2) dp
Apply the fundamental theorem of calculus.
The antiderivative of 1/(1 - p^2) is tanh^(-1)(p):
= (5 log(3))/2 + (-tanh^(-1)(p)) right bracketing bar _3^5
Evaluate the antiderivative at the limits and subtract. (-tanh^(-1)(p)) right bracketing bar _3^5 = (-tanh^(-1)(5)) - (-tanh^(-1)(3)) = tanh^(-1)(3) - tanh^(-1)(5):
= (5 log(3))/2 + tanh^(-1)(3) - tanh^(-1)(5)
Which is equal to:
Answer: = log(18)