Answer:
The correct answer is C
Explanation:
Change is momentum can be described as the change in the product of mass and velocity of a body. Every moving object as a momentum and the higher the momentum of this object, the harder it is to stop. Impulse (a force), which is sometimes used to describe change in momentum can be described as the product as force multiplied by time.
From the description above, it can be deduced that an increase in impulse can lead to a greater change in momentum. And an increase in impulse can be brought about by an increase in the time it takes a body to be brought to rest after collision. And since the car that hit the water barrels was brought to rest at a longer time, it has a greater change in momentum
Think about the formula for potential energy. (Surely you remember it):
Potential energy = (mass) x (acceleration of gravity) x (height)
-- The mass on the end of the pendulum doesn't change.
-- The acceleration of gravity doesn't change.
-- The only thing that changes is the height of the mass on the end.
So the potential energy is lowest when its height is the lowest.
That's position <em>B </em>.
(a) The stone moves by uniform accelerated motion, with constant acceleration

directed downwards, and its initial vertical position at time t=0 is 750 m. So, the vertical position (in meters) at any time t can be written as

(b) The time the stone takes to reach the ground is the time at which the vertical position of the stone becomes zero: y(t)=0. So, we can write

from which we find the time t after which the stone reaches the ground:

(c) The velocity of the stone at time t can be written as

because it is an accelerated motion with initial speed zero. Substituting t=12.37 s, we find the final velocity of the stone:

(d) if the stone has an initial velocity of

, then its law of motion would be

and we can find the time it needs to reach the ground by requiring again y(t)=0:

which has two solutions: one is negative so we neglect it, while the second one is t=11.78 s, so this is the time after which the stone reaches the ground.
Answer:
density
Explanation:
Convection currents are the result of differential heating. Lighter (less dense), warm material rises while heavier (more dense) cool material sinks. It is this movement that creates circulation patterns known as convection currents in the atmosphere, in water, and in the mantle of Earth.
LET ME KNOW IF THIS HELPED :)
Answer:
O speed of the object increases 9.8 m/s during each second
a = 9.8 m/s/s