Answer:
The object has 1250 Joules of Kinetic Energy.
Explanation:
Kinetic Energy =
mass*velocity²
KE =
mv²
KE =
(100kg)(5m/s)²
KE =
(100kg)(25m/s²)
KE = 1250
KE = 1250J
Answer:Theoretical Discussion
The diffraction of classical waves refers to the phenomenon wherein the waves encounter an obstacle that fragments the wave into components that interfere with one another. Interference simply means that the wave fronts add together to make a new wave which can be significantly different than the original wave. For example, a pair of sine waves having the same amplitude, but being 180◦ out of phase will sum to zero, since everywhere one is positive, the other is negative by an equal amount.
Answers:
kinetic energy lost = 86.4J
Explanation:
let Kf be the kinetic energy after the collision and Ki be the kinetic energy before the collision. let the 3kg car be 1 and 2kg car be 2.
Kf = K1(f) + K2(f)
Ki = K1(i) + k2(i)
loss in kinetic energy = Kf - Ki
= 1/2(3)(2.20)^2 + 1/2(2)(2.20)^2 - 1/2(3)(7)^2 - 1/2(2)(-5)^2
= 12.1 - 98.5
= -86.4 J
therefore, the kinetic energy lost in the collision is 86.4 J.