Inspect the glassware for cracks or chips prior to beginning the lab.
The simple machine that is not correctly matched with its appropriate task is the inclined plane because there is no such big ramp that is as high as 1 storey building, the appropriate task would be Lifting a heavy box and moving it across a room. and for the pulley : <span>Moving a heavy box up to the second floor of a building.</span>
Answer:

Explanation:
We could use the following suvat equation:

where
s is the vertical displacement of the coin
v is its final velocity, when it hits the water
t is the time
g is the acceleration of gravity
Taking upward as positive direction, in this problem we have:
s = -1.2 m

And the coin reaches the water when
t = 1.3 s
Substituting these data, we can find v:

where the negative sign means the direction is downward.
P = V^2 / R.
So, 3.3^2 / 0.025 = 435.6W.
Note, you can get the power equation from:
P = V*I. Also, I = V/R.
Substituting V/R in for I in the 1st equation, you get P = V^2 / R.
Answer:
E_{k2}=2660 [J] kinetic energy.
Explanation:
The energy in the initial state i.e. when the rollercoaster is at the top is equal to the energy in the final state i.e. when it is at the bottom of the hill.
These states can be represented by means of the second equation.
![E_{k1}+E_{p1}=E_{k2}\\160 + 2500 = E_{k2}\\E_{k2}=2660 [J]](https://tex.z-dn.net/?f=E_%7Bk1%7D%2BE_%7Bp1%7D%3DE_%7Bk2%7D%5C%5C160%20%2B%202500%20%3D%20E_%7Bk2%7D%5C%5CE_%7Bk2%7D%3D2660%20%5BJ%5D)
Since the rollercoaster is located in the bottom of the hill where the potential energy level is zero, therefore there is only kinetic energy in the second state.