Explanation:
Large electrical shifting magnets have concentrated retaining strength to lift dense, ferric objects and a deep-reaching magnetization. An immensely useful materials management technique is these electromagnetic rises.
Answer:
A thin, taut string tied at both ends and oscillating in its third harmonic has its shape described by the equation y(x,t)=(5.60cm)sin[(0.0340rad/cm)x]sin[(50.0rad/s)t]y(x,t)=(5.60cm)sin[(0.0340rad/cm)x]sin[(50.0rad/s)t], where the origin is at the left end of the string, the x-axis is along the string, and the y-axis is perpendicular to the string. (a) Draw a sketch that shows the standing-wave pattern. (b) Find the amplitude of the two traveling waves that make up this standing wave. (c) What is the length of the string? (d) Find the wavelength, frequency, period, and speed of the traveling waves. (e) Find the maximum transverse speed of a point on the string. (f) What would be the equation y(x, t) for this string if it were vibrating in its eighth harmonic?
Hi! In 3 seconds the object will fall approximately 44 meters.
Answer:
<em>The centripetal acceleration would increase by a factor of 4</em>
<em>Correct choice: B.</em>
Explanation:
<u>Circular Motion</u>
The circular motion is described when an object rotates about a fixed point called center. The distance from the object to the center is the radius. There are other magnitudes in the circular motion like the angular speed, tangent speed, and centripetal acceleration. The formulas are:


If the speed is doubled and the radius is the same, then


The centripetal acceleration would increase by a factor of 4
Correct choice: B.