The vertical component of the initial velocity is ![v_0_y = \frac{y}{t} + \frac{1}{2} gt](https://tex.z-dn.net/?f=v_0_y%20%3D%20%5Cfrac%7By%7D%7Bt%7D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20gt)
The horizontal component of the initial velocity is ![v_0_x = \frac{x}{t}](https://tex.z-dn.net/?f=v_0_x%20%3D%20%5Cfrac%7Bx%7D%7Bt%7D)
The horizontal displacement when the object reaches maximum height is ![X = \frac{xy}{gt^2} + \frac{x}{2}](https://tex.z-dn.net/?f=X%20%3D%20%5Cfrac%7Bxy%7D%7Bgt%5E2%7D%20%2B%20%5Cfrac%7Bx%7D%7B2%7D)
The given parameters;
the horizontal displacement of the object, = x
the vertical displacement of the object, = y
acceleration due to gravity, = g
time of motion, = t
The vertical component of the initial velocity is given as;
![y = v_0_yt - \frac{1}{2} gt^2\\\\v_0_yt = y + \frac{1}{2} gt^2\\\\v_0_y = \frac{y}{t} + \frac{1}{2} gt](https://tex.z-dn.net/?f=y%20%3D%20v_0_yt%20-%20%5Cfrac%7B1%7D%7B2%7D%20gt%5E2%5C%5C%5C%5Cv_0_yt%20%3D%20y%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20gt%5E2%5C%5C%5C%5Cv_0_y%20%3D%20%5Cfrac%7By%7D%7Bt%7D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20gt)
The horizontal component of the initial velocity is calculated as;
![x = v_0_xt\\\\v_0_x = \frac{x}{t}](https://tex.z-dn.net/?f=x%20%3D%20v_0_xt%5C%5C%5C%5Cv_0_x%20%3D%20%5Cfrac%7Bx%7D%7Bt%7D)
The time to reach to the maximum height is calculated as;
![T = \frac{v_f_y -v_0_y}{-g} \\\\T = \frac{-v_0_y}{-g} \\\\T = \frac{v_0_y}{g} \\\\T = \frac{1}{g} (v_0_y)\\\\T = \frac{1}{g} (\frac{y}{t} + \frac{1}{2} gt)\\\\T = \frac{y}{gt} + \frac{1}{2} t](https://tex.z-dn.net/?f=T%20%3D%20%5Cfrac%7Bv_f_y%20-v_0_y%7D%7B-g%7D%20%5C%5C%5C%5CT%20%3D%20%5Cfrac%7B-v_0_y%7D%7B-g%7D%20%5C%5C%5C%5CT%20%3D%20%5Cfrac%7Bv_0_y%7D%7Bg%7D%20%5C%5C%5C%5CT%20%3D%20%20%5Cfrac%7B1%7D%7Bg%7D%20%20%28v_0_y%29%5C%5C%5C%5CT%20%3D%20%5Cfrac%7B1%7D%7Bg%7D%20%28%5Cfrac%7By%7D%7Bt%7D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20gt%29%5C%5C%5C%5CT%20%3D%20%5Cfrac%7By%7D%7Bgt%7D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20t)
The horizontal displacement when the object reaches maximum height is calculated as;
![X= v_0_x \times T\\\\X= \frac{x}{t} \times (\frac{y}{gt} + \frac{1}{2} t)\\\\X = \frac{xy}{gt^2} + \frac{x}{2}](https://tex.z-dn.net/?f=X%3D%20v_0_x%20%5Ctimes%20T%5C%5C%5C%5CX%3D%20%5Cfrac%7Bx%7D%7Bt%7D%20%5Ctimes%20%28%5Cfrac%7By%7D%7Bgt%7D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20t%29%5C%5C%5C%5CX%20%3D%20%5Cfrac%7Bxy%7D%7Bgt%5E2%7D%20%2B%20%5Cfrac%7Bx%7D%7B2%7D)
Learn more here: brainly.com/question/20689870
Which organic compound forms much of the structure of cells?
Answer: A Carbohydrates
The correct answer is letter D. candela. The unit for measuring the rate at which light energy is radiated from a source is the candela. L<span>umen is the unit for measuring the total amount of visible light emitted by a source. Lux is lumen per square meter. </span>
Electric Forces. ... Just like objects that have mass exert gravitational forces on each other, objects that are charged will also exert electric forces on each other. The electric force is directly proportional to the charge of the two objects and inversely proportional to the distance between them squared.
Answer:
Velocity is 1.73 m/s along 54.65° south of east.
Explanation:
Let unknown velocity be v, mass of billiard ball be m and east direction be positive x axis.
Here momentum is conserved.
Initial momentum = Final momentum
Initial momentum = m x 2i + m x (-1)i = m i
Final momentum = m x v + m x 1.41 j = mv + 1.41 m j
Comparing
mi = mv + 1.41 m j
v = i - 1.41 j
Magnitude of velocity
Direction,
Velocity is 1.73 m/s along 54.65° south of east.