Answer:
the pathway will be under-expressed.
- the alpha subunit helps to bind with either GDP or GTP. when the α subunit is bound with GDP, it will be bound to β and γ subunits and thus forms an inactive state for G-protein.
- when the alpha subunit binds with the GTP, it becomes activated and dissociates β and γ subunits.
if G-protein Coupled Receptor is unable from dissociating β and γ subunits, then the pathway will go under expression.
The chemical qualities of the alpha subunit allow it to bind easily to one of two guanine subunits, GDP or GTP. The protein thus has two functional formations. When GDP is bound to the alpha subunit, the alpha subunit remains bound to the beta-gamma subunit to form an inactive trimeric protein.
G-proteins, cAMP, and Ion Channel Opening. The alpha subunit activates adenylate cyclase, in purple, and loses GTP. Adenylate cyclase converts ATP to cyclic AMP, which then activates Protein Kinase, shown in blue. Protein Kinase phosphorylates an ion channel, letting sodium ions rush into the cell.
As a result of the ligand binding to its site on the G-protein-linked receptor, A) the G-protein changes conformation and GTP replaces the GDP on the alpha subunit. ... Inactivation of the alpha subunit occurs when its own phosphorylase activity removes a phosphate from the GTP.
Answer:It would be all of them
Explanation: Because they all give ideas on how "could a school reduce its use of energy resources
So weather is basically day to day forecast (rain, sun, clouds) while climate is the all forecasts of an area over years. That’s a simple answer but I hope it helps!
Answer:
1. Stabilizing Selection
2. Directional Selection
3. Disruptive Selection
Explanation:
Stabilizing Selection
This type of natural selection occurs when there are selective pressures working against two extremes of a trait and therefore the intermediate or “middle” trait is selected for. If we look at a distribution of traits in the population, it is noticeable that a standard distribution is followed:
Example: For a plant, the plants that are very tall are exposed to more wind and are at risk of being blown over. The plants that are very short fail to get enough sunlight to prosper. Therefore, the plants that are a middle height between the two get both enough sunlight and protection from the wind.
Directional Selection
This type of natural selection occurs when selective pressures are working in favour of one extreme of a trait. Therefore when looking at a distribution of traits in a population, a graph tends to lean more to one side:
Example: Giraffes with the longest necks are able to reach more leaves to each. Selective pressures will work in the advantage of the longer neck giraffes and therefore the distribution of the trait within the population will shift towards the longer neck trait.
Disruptive Selection
This type of natural selection occurs when selective pressures are working in favour of the two extremes and against the intermediate trait. This type of selection is not as common. When looking at a trait distribution, there are two higher peaks on both ends with a minimum in the middle as such:
Example: An area that has black, white and grey bunnies contains both black and white rocks. Both the traits for white and black will be favored by natural selection since they both prove useful for camouflage. The intermediate trait of grey does not prove as useful and therefore selective pressures act against the trait.
Astronomers have seen stars forming within a nebular cloud. As the nebular cloud condenses and its own gravitational attraction collapses it, heat and energy build up creating a planet.