When the calculator displays 7.3579 E8. it represents the number
7.3579 x 10⁸ in standard form.
Answer: 7.3579 x 10⁸.
P(H,H,H)=P(H,T,H)
This is classical probability, so the probability of an event is the number of "favorable" events over total events.
The total number of events, by the counting principle, is 2^3=8.
The total number of events remains the same for P(H,H,H) and P(H,T,H), as you're still flipping 3 coins with two sides.
For P(H,H,H) the favorable event is (H,H,H) so 1, for P(H,T,H) the favorable event is (H,T,H) also one.
Conclusion:
P(H,H,H)=P(H,T,H)=1/8
6,480
i hope this helpsss
9/-1.........................