Answer:
See answers below
Step-by-step explanation:
T59 = a+58d = -61
T4 = a+3d = 64.
Subtract
58d-3d = -61-64
-55d = -125
d =125/55
d = 25/11
Get a;
From 2
a+3d = 64
a+3(25/11) = 64
a = 64-75/11
a = 704-75/11
a = 629/11
T23 = a+22d
T23 = 629/11+22(25/11)
T23 = 1179/11
The standard form of the equation of a circle is (x-h)^2 + (y-k)^2 = r^2, where (h,k) is the center of the circle, (x,y) is a point of the circle, and r is the length of the radius of the circle. When the equation of a circle is written, h,k, and r are numbers, while x and y are still variables. (x-2)^2 + (y-k)^2 = 16 is an example of a circle. The problem gives us two of the three things that a circle has, a point (5,9) and the center (-2,3). We need to find the radius in order to write the equation. We substitute -2 for h, 3 for k, 5 for x, and 9 for y to get (5 - (-2))^2 + (9 - 3)^2 = r^2 We simplify: 49 + 36 = r^2, r^2 = 85. We only need to know r^2 because the equation of a circle has r^2. We now have all the information to write the equation of a circle. (x + 2)^2 + (y - 3)^2 = 85.