1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Harrizon [31]
3 years ago
14

You are placing non-slip tape along the perimeter of the bottom of a semicircle-shaped doormat. How much tape will you save appl

ying the tape to the perimeter of the inside semicircle of the doormat? Round your answer to the nearest hundredth, if necessary. A semicircle-shaped doormat with diameter of 30 inches. A 3 inches wide non-slip tape is placed along the perimeter of the bottom of the doormat.
Mathematics
1 answer:
sdas [7]3 years ago
5 0

Answer:

The amount of tape to be saved is 15.43 inches.

Step-by-step explanation:

Semicircle is half of a given circle, consisting of an arc and a diameter. Its perimeter is determined by adding the length of its arc to the diameter.

perimeter of a semicircle = length of its arc + its diameter

length of the arc = half of the circumference of its circle

circumference of a circle = 2\pir

half of the circumference of a circle = \pir

length of the arc of the semicircle = half of the circumference of a circle = \pir

The initial diameter of the semicircle = 30 inches

⇒ its radius, r = 15 inches

Amount of tape to be saved = Initial perimeter of the semicircle - perimeter of the inside of the semicircle

Initial perimeter of the semicircle = \pir + length of the diameter

                                                       =  \frac{22}{7} × 15 + 30

                                                       = 47.1429 + 30

                                                       = 77.1429 inches

Initial perimeter of the semicircle is 77.1429 inches.

The inside semicircle is formed, since a tape of width 3 inches has been placed along the perimeter of the initial doormat. Then,

diameter of the inside semicircle = 30 - 6

                                               = 24 inches

⇒           its radius = 12 inches

perimeter of the inside semicircle = \pir + length of the diameter

                                                        =  \frac{22}{7} × 12 + 24

                                                        = 37.7143 + 24

                                                       = 61.7143 inches

perimeter of the inside semicircle is 61.7143 inches.

Amount of tape to be saved = 77.1429 - 61.7143

                                               = 15.4286

The amount of tape to be saved is 15.43 inches.

You might be interested in
Sheniah went to McDonald's and bought a soda for one dollar. She also bought a Big Mac. For any price of the Big Mac, what would
Natalka [10]

Answer:

$1+x(price of big mac)

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
cuanto pagaríamos por un libro cuyo precio es de $25 si le aplicamos un descuento del 25% cuanto dinero ahorramos
kotegsom [21]

Tenemos precio de lista de $25 para el libro.

Si aplicamos un descuento del 25%, este descuento representa:

D=(\frac{25}{100})\cdot25=0.25\cdot25=6.25

Ahorramos $6.25.

El precio que pagamos el libro es $18.75.

P=L-D=25-6.25=18.75

4 0
1 year ago
Can someone help me ​
AlladinOne [14]
No I’m sorry I am literally in 5th grade my guy
5 0
3 years ago
Read 2 more answers
If Train A is moving 66 mph and is 456 miles from the station while Train B is moving 72 mph and is 502 miles away, which train
Len [333]

Answer: train A arrives first

Step-by-step explanation:

7 0
3 years ago
Find and simplify each of the following for
WINSTONCH [101]

Answer:

(A) f(x + h) = 4x² + 8xh + 4h² - 6x - 6h + 6

(B) f(x + h) - f(x) = 8xh + 4h² - 6h

(C) \frac{f(x+h)-f(x)}{h}=8x+4h-6

Step-by-step explanation:

* Lets explain how to solve the problem

- The function f(x) = 4x² - 6x + 6

- To find f(x + h) substitute x in the function by (x + h)

∵ f(x) = 4x² - 6x + 6

∴ f(x + h) = 4(x + h)² - 6(x + h) + 6

- Lets simplify 4(x + h)²

∵ (x + h)² = (x)(x) + 2(x)(h) + (h)(h) = x² + 2xh + h²

∴ 4(x + h)² = 4(x² + 2xh + h²) = 4x² + 8xh + 4h²

- Lets simplify 6(x + h)

∵ 6(x + h) = 6(x) + 6(h)

∴ 6(x + h) = 6x + 6h

∴ f(x + h) = 4x² + 8xh + 4h² - (6x + 6h) + 6

- Remember (-)(+) = (-)

∴ f(x + h) = 4x² + 8xh + 4h² - 6x - 6h + 6

* (A) f(x + h) = 4x² + 8xh + 4h² - 6x - 6h + 6

- Lets find f(x + h) - f(x)

∵ f(x + h) = 4x² + 8xh + 4h² - 6x - 6h + 6

∵ f(x) = 4x² - 6x + 6

∴ f(x + h) - f(x) = 4x² + 8xh + 4h² - 6x - 6h + 6 - (4x² - 6x + 6)

- Remember (-)(-) = (+)

∴ f(x + h) - f(x) = 4x² + 8xh + 4h² - 6x - 6h + 6 - 4x² + 6x - 6

- Simplify by adding the like terms

∴ f(x + h) - f(x) = (4x² - 4x²) + 8xh + 4h² + (- 6x + 6x) - 6h + (6 - 6)

∴ f(x + h) - f(x) = 8xh + 4h² - 6h

* (B) f(x + h) - f(x) = 8xh + 4h² - 6h

- Lets find \frac{f(x+h)-f(x)}{h}

∵ f(x + h) - f(x) = 8xh + 4h² - 6h

∴ \frac{f(x+h)-f(x)}{h}=\frac{8xh + 4h^{2}-6h}{h}

- Simplify by separate the three terms

∴ \frac{f(x+h)-f(x)}{h}=\frac{8xh}{h}+\frac{4h^{2} }{h}-\frac{6h}{h}

∴ \frac{f(x+h)-f(x)}{h}=8x+4h-6

* (C) \frac{f(x+h)-f(x)}{h}=8x+4h-6

4 0
3 years ago
Other questions:
  • Question 5
    11·1 answer
  • in 4.5 hours, 11.25 inches of snow fell suppose the same amount of snow fell each hour how much snow fell each hour
    15·1 answer
  • Cuál es el estimado de doscientos ochenta y cuatro menos ochenta y nueve
    13·1 answer
  • Simplify this equation (5k^2)^3
    11·2 answers
  • Which of these conditions is most likely to exist in a recession or a depression?
    13·2 answers
  • The table below represents a linear function f(x) and the equation represents a function g(x):
    6·1 answer
  • 4x+9/y+11=0 and 6/y -3x=8​
    9·1 answer
  • Giving brainliest No Links
    11·2 answers
  • Order -8, 9, -3, 6, -10, and 2 from least to greatest.​
    13·2 answers
  • 5 3/5 divided 2 2/3 jlll
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!