<span>Lab Safety Rules:
Report all accidents, injuries, and breakage of glass or equipment to instructor immediately. Keep
pathways clear by placing extra items (books, bags, etc.) on the
shelves or under the work tables. If under the tables, make sure that
these items can not be stepped on. Long hair (chin-length or longer) must be tied back to avoid catching fire. Wear sensible clothing including footwear. Loose clothing should be secured so they do not get caught in a flame or chemicals.<span>Work quietly — know what you are doing by reading the assigned experiment before you start to work. Pay close attention to any cautions described in the laboratory exercises</span> Do not taste or smell chemicals.<span> Wear safety goggles to protect your eyes when heating substances, dissecting, etc.</span> Do not attempt to change the position of glass tubing in a stopper.<span> Never point a test tube being heated at another student or yourself. Never look into a test tube while you are heating it.</span><span>Unauthorized experiments or procedures must not be attempted.</span>Keep solids out of the sink. Leave your work station clean and in good order before leaving the laboratory. Do not lean, hang over or sit on the laboratory tables. Do not leave your assigned laboratory station without permission of the teacher. Learn the location of the fire extinguisher, eye wash station, first aid kit and safety shower. Fooling
around or "horse play" in the laboratory is absolutely forbidden.
Students found in violation of this safety rule will be barred from participating in future labs and could result in suspension. Anyone wearing acrylic nails will not be allowed to work with matches, lighted splints, Bunsen burners, etc. Do not lift any solutions, glassware or other types of apparatus above eye level. Follow all instructions given by your teacher.Learn how to transport all materials and equipment safely. No eating or drinking in the lab at any time! </span>
Water is a really good conductor of sound so I would have to say that it would be to send the message underwater because a more dense medium produces a louder sound
Answer: D. Density of uranium within nuclear fuel rods is insufficient to become explosive
Explanation: Nuclear power plants use the same fuel as nuclear bombs, i.e. radioactive Uranium-235 isotope. However, in a nuclear power plant, the energy is released more slowly unlike in a nuclear bomb. <em>The energy released is through nuclear fission, and radioactive decay occurs at the same rate as in nuclear bombs. therefore, option A, B</em><em> </em><em>and C are incorrect.</em>
The primary reason why nuclear chain reactions within power plants do NOT produce bomb-like explosions is because the uranium fuel rods used in electricity generation is not sufficiently enriched in Uranium-235 to produce a nuclear detonation. This is the same idea in option D which is the correct option.
Answer:
m = 4.4 × 10³ kg
Explanation:
Given that:
The total yearly energy is 4.0 × 10²⁰ J
The amount of mass that provides this energy can be determined by using the formula:
E = mc²
where;
c = speed of light in free space = (3 × 10⁸)
4.0 × 10²⁰ = m × (3 × 10⁸)²

m = 4.4 × 10³ kg