That's what happens if there is more than one force acting on the
object, and the forces are balanced, that is, they all "cancel out".
Think of the rope in a Tug-'o-War. It has 50 musclebound football guys
all pulling the rope to the west, and 150 strong cheerleaders all pulling
the rope to the east. The total force to the west is exactly equal to the
total force to the east, and the rope doesn't move at all. The forces on it
are balanced, and the effect on its motion is the same as if there were
no force on it at all.
Answer:
Red photons have the least amount of energy
Explanation:
The relationship between the photon energy and the color of light is given by:
where
E is the energy
h is the Planck constant
c is the speed of light
is the wavelength (which determines the color of light)
As we see from the equation, energy and wavelength are inversely proportional: this means that the longer the wavelength, the lower the energy, and viceversa.
Among the colors in the visible light spectrum, red is the color with longest wavelength (620-750 nm) and violet is the color with shortest wavelength (380-450 nm). This means that red photons have the least amount of energy, while violet photons have the greatest amount of energy.
So the correct choice is
Red photons have the least amount of energy
Your answer would be A. Solid. Hope this helps!
The electrostatic potential energy, U, of one point charge q at position d in the presence of an electric field E is defined as the negative of the work W done by the electrostatic force to bring it from the reference position d to that position
Thus, to double the electric potential energy U we need to reduce the distance of separation by half (1/2) because they are inversely proportion
Answer:
2m/s^2
Explanation:
Clculate the acceleration:
V = u +at
20m/s = 0 + a*10s
a = 20m//10s
a = 2m/s²
From the data given , it is not possible to calculate the displacement , because no direction of motion is given
But it is possible to calculate the distance travelled
Distance = ut + ½ *a*t²
distance = 0 + ½ * 2m/s * 10²s
distance = 100m