Substitution Reactions are those reactions in which one nucleophile replaces another nucleophile present on a substrate. These reactions can take place via two different mechanism i.e SN¹ or SN². In SN¹ substitution reactions the leaving group leaves first forming a carbocation and nucleophile attacks carbocation in the second step. While in SN² reactions the addition of Nucleophile and leaving of leaving group take place simultaneously.
Example:
OH⁻ + CH₃-Br → CH₃-OH + Br⁻
In above reaction,
OH⁻ = Incoming Nucleophile
CH₃-Br = Substrate
CH₃-OH = Product
Br⁻ = Leaving group
Organic reactions are typically slower than ionic reactions because in organic compounds the covalent bonds are first broken, this breaking of bonds is a slower step, while, in ionic compounds no bond breakage is required as it consists of ions, so only bond formation takes place which is a quicker and fast step.
Answer: The law of corresponding states is an empirical law according to which the equations of states for real gases are similar when these gases are expressed in reduced temperature, pressures, and volumes at critical point.
Answer is: n-octane.
Octane is the straight-chain alkane (an acyclic saturated hydrocarbon) with eight carbon atoms.
Carbons in octane have sp3 hybridization (carbon’s 2s and three 2p orbitals combine into four identical sp3 orbitals).
Orbitals in sp3 hybridization have a tetrahedral arrangement and form single (sigma) bonds.
Burning octane fuel is very fast chemical reaction, it happens in immediately.
Main products of the combustion of fossil fuels are carbon(IV) oxide and water.
Chemical reaction: C₈H₁₈ + 25/2O₂ → 8CO₂ + 9H₂O; ΔH = -5500 kJ/mol.
28 degrees below freezing would be 4 degrees