The phase change in which the water molecules become most orderly is the freezing. This is the process of changing water as liquid to its solidified form. The process of freezing is an exothermic which means that for this to occur, heat should be removed from the system.
<span>To find the molar mass, look at a periodic table for each element.
Ibuprofen, C13 H18 and O2. Carbon has a molar mass of 12.01 g, Hydrogen has 1.008 g per mole, and Oxygen is 16.00 g per mole.
C: 13 * 12.01
H: 18 * 1.008
O: 2 * 16.00
Calculate that, add them all together, and that is the molar mass of C13H18O2.
Molar mass: 206.274
Next, you have 200mg in each tablet, with a ratio of C13H18O2 (molar mass) in GRAMS per Mole
So, you need to convert miligrams into grams, which is 200 divided by 1000.
0.2 g / Unknown mole = 206.274 g / 1 Mole
This is a cross multiplying ratio where you're going to solve for the unknown moles of grams per tablet compared to the moles per ibuprofen.
So, it's set up as:
0.2 g * 1 mole = 206.274 * x
0.2 = 206.274x
divide each side by 206.274 to get X alone
X = 0.00097
or 9.7 * 10^-4 moles
The last problem should be easy to figure out now that you have the numbers. 1 dose is 2 tablets, which is the moles we just calculated above, times four for the dosage.
</span>
Answer: The values become more negative
Explanation: I just took the quiz and got it correct :)
To calculate the average mass of the element, we take the summation of the product of the isotope and the percent abundance. We calculate as follows:
Average atomic mass = .374 ( 184.953 amu ) + .626 ( <span>186.958 amu ) = 186.208 amu
Hope this answers the question. Have a nice day.</span>
When energy transforms into mass, the amount of energy does not remain the same. When mass transforms into energy, the amount of energy also does not remain the same. However, the amount of matter and energy remains the same. ... You would weigh much less on the Moon because it is only about one-sixth the mass of Earth. So the answer is D