Answer:
633 grams of sugar can be dissolved in 300 g of H₂O
Explanation:
Solubility is the measure of the ability of a certain substance to dissolve in another and form a homogeneous system. Solubility is then the maximum amount of a solute that a solvent can receive and is expressed by concentration units.
The rule of three or is a way of solving problems of proportionality between three known values and an unknown value, establishing a relationship of proportionality between all of them. That is, what is intended with it is to find the fourth term of a proportion knowing the other three. Remember that proportionality is a constant relationship or ratio between different magnitudes.
If the relationship between the magnitudes is direct, that is, when one magnitude increases, so does the other (or when one magnitude decreases, so does the other) , the direct rule of three must be applied. To solve a direct rule of three, the following formula must be followed:
a ⇒ b
c ⇒ x
Then:

You can apply the rule of three as follows: if by definition of solubility in 100 grams of H₂O there are 211 grams of sugar, in 300 g of H₂O how much sugar is there?

sugar= 633 grams
<u><em>633 grams of sugar can be dissolved in 300 g of H₂O</em></u>
Answer:
at the beginning:
pH = 0.745
Explanation:
HCl is a strong acid, so:
0.18 M 0.18 0.18.....equilibrium
before base is added:
∴ [ H3O+ ] ≅ <em>C </em>HCl = 0.18 M
⇒ pH = - Log [ H3O+ ] = - Log ( 0.18 )
⇒ pH = 0.745
I think 3 of them are its been 1 half years since ive done this i dont take chemistry anymore
Answer:
The molar mass of the unknown gas is 
Explanation:
Let assume that the gas is O2 gas
O2 gas is to effuse through a porous barrier in time t₁ = 4.98 minutes.
Under the same conditions;
the same number of moles of an unknown gas requires time t₂ = 6.34 minutes to effuse through the same barrier.
From Graham's Law of Diffusion;
Graham's Law of Diffusion states that, at a constant temperature and pressure; the rate of diffusion of a gas is inversely proportional to the square root of its density.
i.e

where K = constant
If we compare the rate o diffusion of two gases;

Since the density of a gas d is proportional to its relative molecular mass M. Then;

Rate is the reciprocal of time ; i.e

Thus; replacing the value of R into the above previous equation;we have:

We can equally say:





