If you're using the app, try seeing this answer through your browser: brainly.com/question/2867785_______________
Evaluate the indefinite integral:

Make a trigonometric substitution:

so the integral (i) becomes


Now, substitute back for t = arcsin(x²), and you finally get the result:

✔
________
You could also make
x² = cos t
and you would get this expression for the integral:

✔
which is fine, because those two functions have the same derivative, as the difference between them is a constant:
![\mathsf{\dfrac{1}{2}\,arcsin(x^2)-\left(-\dfrac{1}{2}\,arccos(x^2)\right)}\\\\\\ =\mathsf{\dfrac{1}{2}\,arcsin(x^2)+\dfrac{1}{2}\,arccos(x^2)}\\\\\\ =\mathsf{\dfrac{1}{2}\cdot \left[\,arcsin(x^2)+arccos(x^2)\right]}\\\\\\ =\mathsf{\dfrac{1}{2}\cdot \dfrac{\pi}{2}}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cdfrac%7B1%7D%7B2%7D%5C%2Carcsin%28x%5E2%29-%5Cleft%28-%5Cdfrac%7B1%7D%7B2%7D%5C%2Carccos%28x%5E2%29%5Cright%29%7D%5C%5C%5C%5C%5C%5C%0A%3D%5Cmathsf%7B%5Cdfrac%7B1%7D%7B2%7D%5C%2Carcsin%28x%5E2%29%2B%5Cdfrac%7B1%7D%7B2%7D%5C%2Carccos%28x%5E2%29%7D%5C%5C%5C%5C%5C%5C%0A%3D%5Cmathsf%7B%5Cdfrac%7B1%7D%7B2%7D%5Ccdot%20%5Cleft%5B%5C%2Carcsin%28x%5E2%29%2Barccos%28x%5E2%29%5Cright%5D%7D%5C%5C%5C%5C%5C%5C%0A%3D%5Cmathsf%7B%5Cdfrac%7B1%7D%7B2%7D%5Ccdot%20%5Cdfrac%7B%5Cpi%7D%7B2%7D%7D)

✔
and that constant does not interfer in the differentiation process, because the derivative of a constant is zero.
I hope this helps. =)
Answer:
infinite solutions
Step-by-step explanation:
Hello!
Since 3r - 5 is on both sides of the equation we can put any number in for r and it would still be true so the answer is infinite solutions
The answer is infinite solutions
Hope this helps!
If the amount she saved was $6 for 20%, then the formula for finding savings would be cost*percentage.
But if you want to find the original cost, then you play with the current formula until you get this. $6/20%. Have a good one :)
The quotient is 5x^2 + 3x -3 and the remainder is -3.
1 1/4
Step-by-step explanation:
Use this to get answer for Fractions Cacluatorsoup. com