#4 .
x + 8 - 8 = 7 - 8
It's "Subtraction property of equality"
It's correct
8:14 is ratio to red to all apples
8:6 is the ratio to green apples
Answer:
the probability that the sample mean will be larger than 1224 is 0.0082
Step-by-step explanation:
Given that:
The SAT scores have an average of 1200
with a standard deviation of 60
also; a sample of 36 scores is selected
The objective is to determine the probability that the sample mean will be larger than 1224
Assuming X to be the random variable that represents the SAT score of each student.
This implies that ;

the probability that the sample mean will be larger than 1224 will now be:






From Excel Table ; Using the formula (=NORMDIST(2.4))
P(\overline X > 1224) = 1 - 0.9918
P(\overline X > 1224) = 0.0082
Hence; the probability that the sample mean will be larger than 1224 is 0.0082
The amount needed such that when it comes time for retirement is $2,296,305. This problem solved using the future value of an annuity formula by calculating the sum of a series payment through a specific amount of time. The formula of the future value of an annuity is FV = C*(((1+i)^n - 1)/i), where FV is the future value, C is the payment for each period, n is the period of time, and i is the interest rate. The interest rate used in the calculation is 4.1%/12 and the period of time used in the calculation is 30*12 because the basis of the return is a monthly payment.
FV = $3,250*(((1+(4.1%/12)^(30*12)-1)/(4.1%/12))
Simplify by combining the real and imaginary parts of each expression.
1
,
−
96