(E) ionic aluminum fluoride (AlF3)
Answer:
Controlling the environment is the most key procedures for getting good results.
Explanation:
The control environment for an experiment is the essential part for getting good results. In control environment, there is no or less chances of disruption
from the external environment which can cause the results of the data more acceptable. So the scientists prefers laboratory for performing experiment as compared to outer environment. So in my opinion for getting better results, the control environment is the most necessary experimental procedure.
2 C₇H₆O₂ + 15 O₂ → 14 CO₂ + 6 H₂O
<u>Explanation:</u>
C₇H₆O₂ + O₂ → CO₂ + H₂O
First we have to balance the O- atoms, we have to put 6 in front of water so there are 12 H atoms on RHS, to balance it we need to put 2 in front of C₇H₆O₂, and so we have 14 C - atoms on LHS, 28 + 6 = 34 O - atoms on RHS, so we have to put 15 in front of Oxygen in LHS, so that each and every atom in the equation gets balanced now. The balanced equation is, 2 C₇H₆O₂ + 15 O₂ → 14 CO₂ + 6 H₂O
Answer:
onverted
Conversion factor: 946.352946
1) mL = Quart * 946.352946
2) mL = 4.8 * 946.352946
3) mL = 4542.4941
The calculated enthalpy values are as follows:
- Total enthalpy of reactants = -103.85 KJ/mol
- Total enthalpy of products = -2057.68 KJ/mol
- Enthalpy of reaction = -1953.83 kJ/mol
<h3>What is the enthalpy of the reaction?</h3>
The enthalpy of the reaction is determined as follows:
- Enthalpy of reaction = Total enthalpy of products -Total enthalpy of reactants
- Total enthalpy of reactants = (ΔHf of Reactant 1 x Coefficient) + (ΔHf of Reactant 2 x Coefficient)
- Total enthalpy of products= (ΔHf of Product 1 x Coefficient) + (ΔHf of Product 2 x Coefficient)
Equation of reaction equation: C₃H₈ (g) + 5 O(g) → 4 H₂O(g) + 3CO₂(g)
Total enthalpy of reactants = (-103.85 * 1) + (0 * 5)
Total enthalpy of reactants = -103.85 + 0
Total enthalpy of reactants = -103.85 KJ/mol
Total enthalpy of products = (-393.51 * 4) +(-241.82 * 3)
Total enthalpy of products = (-1574.04) + (-483.64)
Total enthalpy of products = -2057.68 KJ/mol
Enthalpy of reaction = -2057.68 KJ/mol -(-103.85 KJ/mol)
Enthalpy of reaction = -1953.83 kJ/mol
In conclusion, the enthalpy of the reaction is determined from the difference between the total enthalpy of products and reactants.
Learn more about enthalpy of reaction at: brainly.com/question/14047927
#SPJ1