Answer:
24.0 g C₃H₈
Explanation:
To find the mass of C₃H₈, you need to (1) convert grams CO/H₂ to moles CO/H₂ (via molar mass), then (2) convert moles CO/H₂ to moles C₃H₈ (via mole-to-mole ratio from reaction coefficients), and then (3) convert moles C₃H₈ to grams C₃H₈ (via molar mass). It is important to arrange the conversions/ratios in a way that allows for the cancellation of units (the desired unit should be in the numerator). The final answer should have 3 sig figs to reflect the sig figs in the given values.
Molar Mass (CO): 12.011 g/mol + 15.998 g/mol
Molar Mass (CO): 28.009 g/mol
Molar Mass (H₂): 2(1.008 g/mol)
Molar Mass (H₂): 2.016 g/mol
Molar Mass (C₃H₈): 3(12.011 g/mol) + 8(1.008 g/mol)
Molar Mass (C₃H₈): 44.097 g/mol
3 CO + 7 H₂ ----> 1 C₃H₈ + 3 H₂O
^ ^ ^
45.8 g CO 1 mole 1 mole C₃H₈ 44.097 g
----------------- x ------------------ x -------------------- x ------------------ =
28.009 g 3 moles CO 1 mole
= 24.0 g C₃H₈
87.3 g H₂ 1 mole 1 mole C₃H₈ 44.097 g
---------------- x --------------- x --------------------- x ----------------- =
2.016 g 7 moles H₂ 1 mole
= 273 g C₃H₈
It was necessary to find the mass of the products from both of the reactants because you did not know which one was the limiting reagent. The limiting reagent is the reactant which is completely used up first. Because CO produced the smaller amount of product, it must be the limiting reagent. Therefore, the actual amount of C₃H₈ produced is 24.0 grams.
Answer:
Gold
Explanation:
I think its gold since its a pure element, hope it helped
Reducing agent is an compound/atom, that loses an electron and is oxidized.
0.........+I.............+II............0
Ca + 2HCl ----> CaCl₂ + H₂
Calcium is oxidized --- it's reducing agent (reductant).
Hydrogen is reduced --- HCl is oxidizing agent.
Answer: 
Explanation: \frac{2}{34}\cdot \:100\%\:=\frac{1}{17}
I tried my best, I hope this helps!
We will use this formlula: Mass in grams = Number of moles x Molecular mass of 1 mole.
Since, we know the avagadro number is 6.02 x 10²³, we only have two unknown values left which are the molecular mass of CH3OH and its mole.
Molecular Mass: C = 12, H= 1, O = 16, since we have C=12, H4 = 4, O = 16, we will add them up: 12 + 4 + 16 =32
We know that one mole of anything = 6.02 x 10²³.
So we will use this formula to find the mole of methanol: Number of moles = Number of molecules / Avagadro number
Number of moles of CH3OH = (9.79 x 10^24)/6.02 x 10²³) = 16.263 moles.
Now we know that the molecular mass = 32 and the mole is = 16.263.
Now we can find its mass by using this formula: <span>Mass in grams = Number of moles x Molecular mass of 1 mole.
</span>
Mass in grams = 16.263 x 32 = 520g