1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tom [10]
3 years ago
6

The price of a gallon of milk was $2.65 the price Rose y dollars the price dropped $0.15Rose by $0.05 which expression represent

s the current price of milk
Mathematics
1 answer:
Ipatiy [6.2K]3 years ago
5 0
2.65 - 0.15 - 0.05

I hope you get it right
You might be interested in
A right triangle has sides 10 and 24. Use the Pythagorean Theorem to find the length of the hypotenuse.
denis-greek [22]

Answer:

26

explination

10^2+24^2=26^2

4 0
3 years ago
Please help; algebra 2
babymother [125]

Answer:

Step-by-step explanation:

https://www.tiger-algebra.com/drill/2x_8y=68,y=6x-4/

8 0
3 years ago
Evaluate the following definite integral​
mihalych1998 [28]

Answer:

\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}

General Formulas and Concepts:

<u>Symbols</u>

  • e (Euler's number) ≈ 2.71828

<u>Algebra I</u>

  • Exponential Rule [Multiplying]:                                                                     \displaystyle b^m \cdot b^n = b^{m + n}

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Definite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

  • U-Solve

Integration by Parts:                                                                                               \displaystyle \int {u} \, dv = uv - \int {v} \, du

  • [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integrand] Rewrite [Exponential Rule - Multiplying]:                                 \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \int\limits^1_0 {x^5e^{x^3}e} \, dx
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = e\int\limits^1_0 {x^5e^{x^3}} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-solve.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = x^3
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = 3x^2 \ dx
  3. [<em>u</em>] Rewrite:                                                                                                     \displaystyle x = \sqrt[3]{u}
  4. [<em>du</em>] Rewrite:                                                                                                   \displaystyle dx = \frac{1}{3x^2} \ du

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] U-Solve:                                                                                         \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = e\int\limits^1_0 {x^5e^{(\sqrt[3]{u})^3}\frac{1}{3x^2}} \, du
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}\int\limits^1_0 {x^5e^{(\sqrt[3]{u})^3}\frac{1}{x^2}} \, du
  3. [Integral] Simplify:                                                                                         \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}\int\limits^1_0 {x^3e^u} \, du
  4. [Integrand] U-Solve:                                                                                      \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}\int\limits^1_0 {ue^u} \, du

<u>Step 5: integrate Pt. 4</u>

<em>Identify variables for integration by parts using LIPET.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = u
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = du
  3. Set <em>dv</em>:                                                                                                           \displaystyle dv = e^u \ du
  4. [<em>dv</em>] Exponential Integration:                                                                         \displaystyle v = e^u

<u>Step 6: Integrate Pt. 5</u>

  1. [Integral] Integration by Parts:                                                                        \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3} \bigg[ ue^u \bigg| \limits^1_0 - \int\limits^1_0 {e^u} \, du \bigg]
  2. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3} \bigg[ ue^u \bigg| \limits^1_0 - e^u \bigg| \limits^1_0 \bigg]
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}[ e - e ]
  4. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
PLS HELP ME ASAP FOR 12 AND 14!! (MUST SHOW WORK!!) + LOTS OF POINTS!!
nignag [31]
R for ?
14) 96x1=24r
       96=24r
       r= 4 
5 0
3 years ago
Read 2 more answers
could you possibly help me with this question? (its not part of a graded assignment, just a review from an online course of mine
Virty [35]

Let:

x = Pounds of walnuts in the mix.

Each pound of walnuts costs $0.80. thus x pounds of walnuts cost 0.8x dollars.

Each pound of cashews costs $1.25 and the mix will contain 8 pounds of cashews, so the cost is 8*$1.25 = $10

The total cost of the mix is, therefore: 0.8x + 10 dollars.

We are also given the pound of mix costs $1.00 and we have a total of 8 + x pounds, so the total cost of the mix is 1*(8 + x) dollars.

Equating both costs:

0.8x + 10 = 1*(8 + x)

Operating:

0.8x + 10 = 8 + x

Subtracting x and 10:

0.8x - x = 8 - 10

Simplifying:

-0.2x = -2

Dividing by -0.2:

x = -2/(-0.2)

x = 10

Answer: 10 pounds

8 0
1 year ago
Other questions:
  • Suzy's soccer team has played 6 games this year. The mode of the number of goals her team scored is 2 goals. How will the mode b
    15·2 answers
  • WORTH 35 POINTS <br> Please use picture!!
    8·1 answer
  • QUICK I NEED ANSWER ASAP What happens if you decide to cash in your Certificate of Deposit (CD) before its maturity date?
    12·2 answers
  • Toss a coin 7 times. what is the number of sequences of heads or tails?
    7·1 answer
  • Solve the system by elimination<br> -6x + 6y = 0<br> 9x - 8y = 4
    6·1 answer
  • Which multiplication equation can be used to explain the solution to 15: ?
    12·1 answer
  • Help plz:)))I’ll mark u Brainliest
    6·1 answer
  • Doe anyone know this? At least someone have to
    9·1 answer
  • Find the slope (5,9) and (3,-7)
    10·1 answer
  • Competitive firms that earn a loss in the short run should
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!