Answer:
Step-by-step explanation:
https://www.tiger-algebra.com/drill/2x_8y=68,y=6x-4/
Answer:

General Formulas and Concepts:
<u>Symbols</u>
- e (Euler's number) ≈ 2.71828
<u>Algebra I</u>
- Exponential Rule [Multiplying]:

<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
- Definite Integrals
- Integration Constant C
Integration Rule [Reverse Power Rule]: 
Integration Rule [Fundamental Theorem of Calculus 1]: 
Integration Property [Multiplied Constant]: 
U-Substitution
Integration by Parts: 
- [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Integrate Pt. 1</u>
- [Integrand] Rewrite [Exponential Rule - Multiplying]:

- [Integral] Rewrite [Integration Property - Multiplied Constant]:

<u>Step 3: Integrate Pt. 2</u>
<em>Identify variables for u-solve.</em>
- Set <em>u</em>:

- [<em>u</em>] Differentiate [Basic Power Rule]:

- [<em>u</em>] Rewrite:
![\displaystyle x = \sqrt[3]{u}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20x%20%3D%20%5Csqrt%5B3%5D%7Bu%7D)
- [<em>du</em>] Rewrite:

<u>Step 4: Integrate Pt. 3</u>
- [Integral] U-Solve:
![\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = e\int\limits^1_0 {x^5e^{(\sqrt[3]{u})^3}\frac{1}{3x^2}} \, du](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E1_0%20%7Bx%5E5e%5E%7Bx%5E3%20%2B%201%7D%7D%20%5C%2C%20dx%20%3D%20e%5Cint%5Climits%5E1_0%20%7Bx%5E5e%5E%7B%28%5Csqrt%5B3%5D%7Bu%7D%29%5E3%7D%5Cfrac%7B1%7D%7B3x%5E2%7D%7D%20%5C%2C%20du)
- [Integral] Rewrite [Integration Property - Multiplied Constant]:
![\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}\int\limits^1_0 {x^5e^{(\sqrt[3]{u})^3}\frac{1}{x^2}} \, du](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E1_0%20%7Bx%5E5e%5E%7Bx%5E3%20%2B%201%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7Be%7D%7B3%7D%5Cint%5Climits%5E1_0%20%7Bx%5E5e%5E%7B%28%5Csqrt%5B3%5D%7Bu%7D%29%5E3%7D%5Cfrac%7B1%7D%7Bx%5E2%7D%7D%20%5C%2C%20du)
- [Integral] Simplify:

- [Integrand] U-Solve:

<u>Step 5: integrate Pt. 4</u>
<em>Identify variables for integration by parts using LIPET.</em>
- Set <em>u</em>:

- [<em>u</em>] Differentiate [Basic Power Rule]:

- Set <em>dv</em>:

- [<em>dv</em>] Exponential Integration:

<u>Step 6: Integrate Pt. 5</u>
- [Integral] Integration by Parts:
![\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3} \bigg[ ue^u \bigg| \limits^1_0 - \int\limits^1_0 {e^u} \, du \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E1_0%20%7Bx%5E5e%5E%7Bx%5E3%20%2B%201%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7Be%7D%7B3%7D%20%5Cbigg%5B%20ue%5Eu%20%5Cbigg%7C%20%5Climits%5E1_0%20-%20%5Cint%5Climits%5E1_0%20%7Be%5Eu%7D%20%5C%2C%20du%20%5Cbigg%5D)
- [Integral] Exponential Integration:
![\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3} \bigg[ ue^u \bigg| \limits^1_0 - e^u \bigg| \limits^1_0 \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E1_0%20%7Bx%5E5e%5E%7Bx%5E3%20%2B%201%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7Be%7D%7B3%7D%20%5Cbigg%5B%20ue%5Eu%20%5Cbigg%7C%20%5Climits%5E1_0%20-%20e%5Eu%20%5Cbigg%7C%20%5Climits%5E1_0%20%5Cbigg%5D)
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
![\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}[ e - e ]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E1_0%20%7Bx%5E5e%5E%7Bx%5E3%20%2B%201%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7Be%7D%7B3%7D%5B%20e%20-%20e%20%5D)
- Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e
R for ?
14) 96x1=24r
96=24r
r= 4
Let:
x = Pounds of walnuts in the mix.
Each pound of walnuts costs $0.80. thus x pounds of walnuts cost 0.8x dollars.
Each pound of cashews costs $1.25 and the mix will contain 8 pounds of cashews, so the cost is 8*$1.25 = $10
The total cost of the mix is, therefore: 0.8x + 10 dollars.
We are also given the pound of mix costs $1.00 and we have a total of 8 + x pounds, so the total cost of the mix is 1*(8 + x) dollars.
Equating both costs:
0.8x + 10 = 1*(8 + x)
Operating:
0.8x + 10 = 8 + x
Subtracting x and 10:
0.8x - x = 8 - 10
Simplifying:
-0.2x = -2
Dividing by -0.2:
x = -2/(-0.2)
x = 10
Answer: 10 pounds